Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 509964
Title Development and distribution of quality related compounds in apples during growth
Author(s) Sadar, N.; Urbanek Krajnc, A.; Tojnko, S.; Tijskens, L.M.M.; Schouten, R.E.; Unuk, T.
Source Scientia Horticulturae 213 (2016). - ISSN 0304-4238 - p. 222 - 231.
Department(s) Horticulture and Product Physiology Group
Publication type Refereed Article in a scientific journal
Publication year 2016
Keyword(s) Apple - Biopsy sampling - Colour - Modeling - Organic acids - Sugars - Taste

Colour and taste are important attributes of apple fruit quality and have therefore been widely studied. Nevertheless, because of the destructive sampling methods commonly used to obtain the data, and of the subsequent traditional analyses, ignoring the effects of biological variation, the knowledge on the kinetic mechanisms of synthesis and degradation of individual quality components during fruit development and growth is still lacking. Spatio-temporal changes of taste components (sugars: fructose, sucrose, glucose, organic acids: malic, citric, shikimic and fumaric acid) and colour aspects (a) in individual apple fruits were monitored to assess the dynamics and mechanisms of change during development and ripening with respect to location within fruit as a factor and the variation between individual apples. Data were analysed with non-linear indexed regression based on either a logistic or an exponential process oriented model assessing the technical variation simultaneously. The rate constants for colour or taste component were roughly similar between cultivars, suggesting a similar mechanism of development and confirming the generic nature of the model. There was a very large biological variation in individual quality components observed in the raw data (the biological variation), which can be almost exclusively explained by the difference in the maturity stage between individual fruit. The explained parts (R2 adj) were, with one exception, higher than 0.90. The major contribution of this study is the fact that all the herein monitored taste defining components can be analysed and described with the same process-oriented model.

There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.