Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 509967
Title Plant growth patterns in a tripartite strip relay intercrop are shaped by asymmetric aboveground competition
Author(s) Huang, Chengdong; Liu, Quanqing; Gou, Fang; Li, Xiaolin; Zhang, Chaochun; Werf, Wopke van der; Zhang, Fusuo
Source Field Crops Research 201 (2017). - ISSN 0378-4290 - p. 41 - 51.
DOI https://doi.org/10.1016/j.fcr.2016.10.021
Department(s) Centre for Crop Systems Analysis
Crop and Weed Ecology
PE&RC
Publication type Refereed Article in a scientific journal
Publication year 2017
Keyword(s) Above- and belowground competition - Growth patterns - Logistic growth - Tripartite intercrop
Abstract

Intercropping is a promising model for ecological intensification of modern agriculture. Little information is available on how species growth patterns are affected by size-asymmetric above- and belowground competitive interactions, especially in intercrops with more than two species. We studied plant growth and competitive interactions in a novel intercropping system with three species: wheat, watermelon and maize. Wheat and maize are grown sequentially (as a double cropping system) in narrow strips while watermelon is grown between the cereal strips, with partial overlap in growing period with the two cereals. Growth patterns were monitored over two years and described with logistic growth curves. Root barriers were used to study the effect of belowground interactions. Wheat produced 31% greater yield per plant in the intercrop than in the sole crop but 24% lower yield per unit total (inter)crop area. Wheat yield increase per plant was associated with faster growth and substantial overyielding in the outer rows of wheat strips. Watermelon did not competitively affect wheat. Watermelon biomass was substantially reduced at the time of wheat harvest. However, compensatory growth after wheat harvest and greater allocation to fruits resulted in a good yield of intercropped watermelon, 92% of monoculture yields, at final harvest. Intercropped maize produced 32% lower grain yield per plant and per unit area than sole maize, as a consequence of later sowing and a changed plant configuration in the intercrop as compared to the sole crop, and competitive effects of watermelon, as shown by comparison with a skip-row maize system without watermelon. Root barriers did not affect yield of any of the species, indicating that aboveground competitive interactions in this case played a more important role in shaping the observed growth responses than belowground interactions. Plant interactions in this tripartite intercrop system are consistent with the hypothesis of size-asymmetric competition for light.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.