Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 509979
Title Characterization of low-strigolactone germplasm in pea (Pisum sativum L.) resistant to crenate broomrape (Orobanche crenata Forsk.)
Author(s) Pavan, Stefano; Schiavulli, Adalgisa; Marcotrigiano, Angelo Raffaele; Bardaro, Nicoletta; Bracuto, Valentina; Ricciardi, Francesca; Charnikhova, Tatsiana; Lotti, Concetta; Bouwmeester, Harro; Ricciardi, Luigi
Source Molecular Plant-Microbe Interactions 29 (2016)10. - ISSN 0894-0282 - p. 743 - 749.
DOI https://doi.org/10.1094/MPMI-07-16-0134-R
Department(s) Laboratory of Plant Breeding
Laboratory of Plant Physiology
EPS
Publication type Refereed Article in a scientific journal
Publication year 2016
Abstract

Crenate broomrape (Orobanche crenata Forsk.) is a devastating parasitic weed threatening the cultivation of legumes around the Mediterranean and in theMiddle East. So far, only moderate levels of resistance were reported to occur in pea (Pisum sativum L.) natural germplasm, and most commercial cultivars are prone to severe infestation. Here, we describe the selection of a pea line highly resistant to O. crenata, following the screening of local genetic resources. Time series observations show that delayed emergence of the parasite is an important parameter associated with broomrape resistance. High performance liquid chromatography connected to tandem mass spectrometry analysis and in vitro broomrape germination bioassays suggest that the resistance mechanism might involve the reduced secretion of strigolactones, plant hormones exuded by roots and acting as signaling molecules for the germination of parasitic weeds. Two years of replicated trials in noninfested fields indicate that the resistance is devoid of pleiotropic effects on yield, in contrast to pea experimental mutants impaired in strigolactone biosynthesis and, thus, is suitable for use in breeding programs.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.