Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 510229
Title Progress on optimizing miscanthus biomass production for the european bioeconomy : Results of the EU FP7 project OPTIMISC
Author(s) Lewandowski, Iris; Clifton-Brown, John; Trindade, Luisa M.; Linden, Gerard C. van der; Schwarz, Kai Uwe; Müller-Sämann, Karl; Anisimov, Alexander; Chen, C.L.; Dolstra, Oene; Donnison, Iain S.; Farrar, Kerrie; Fonteyne, Simon; Harding, Graham; Hastings, Astley; Huxley, Laurie M.; Iqbal, Yasir; Khokhlov, Nikolay; Kiesel, Andreas; Lootens, Peter; Meyer, Heike; Mos, Michal; Muylle, Hilde; Nunn, Chris; Özgüven, Mensure; Roldán-Ruiz, Isabel; Schüle, Heinrich; Tarakanov, Ivan; Weijde, Tim van der; Wagner, Moritz; Xi, Qingguo; Kalinina, Olena
Source Frontiers in Plant Science 7 (2016). - ISSN 1664-462X - 23 p.
Department(s) PBR Biobased Economy
WUR PB Abiotische Stress
Laboratory of Plant Breeding
WUR Plant Breeding
Publication type Refereed Article in a scientific journal
Publication year 2016
Keyword(s) Bioeconomy - Costs - Genotypes - LCA - Marginal land - Miscanthus - Stress tolerance - Value chains

This paper describes the complete findings of the EU-fundedresearch project OPTIMISC,which investigated methods to optimize the production and use of miscanthus biomass. Miscanthus bioenergy and bioproduct chains were investigated by trialing 15 diverse germplasm types in a range of climatic and soil environments across central Europe,Ukraine,Russia,and China. The abiotic stress tolerances of a wider panel of 100 germplasm types to drought,salinity,and low temperatures were measured in the laboratory and a field trial in Belgium. Asmall selection of germplasmtypes was evaluated for performance in grasslands on marginal sites in Germany and the UK. The growth traits underlying biomass yield and quality were measured to improve regional estimates of feedstock availability. Several potential high-value bioproducts were identified. The combined results provide recommendations to policymakers,growers and industry. The major technical advances in miscanthus production achieved by OPTIMISC include: (1) demonstration that novel hybrids can out-yield the standard commercially grown genotype Miscanthus x giganteus; (2) characterization of the interactions of physiological growth responses with environmental variation within andbetween sites; (3) quantification of biomass-quality-relevant traits; (4) abiotic stress tolerances of miscanthus genotypes; (5) selections suitable for production on marginal land; (6) field establishment methods for seeds using plugs; (7) evaluation of harvesting methods; and (8) quantification of energy used in densification (pellet) technologies with a range of hybrids with differences in stem wall properties. End-user needs were addressed by demonstrating the potential of optimizing miscanthus biomass composition for the production of ethanol and biogas as well as for combustion. The costs and life-cycle assessment of seven miscanthus-based value chains,including small- and large-scale heat and power,ethanol,biogas,and insulation material production,revealed GHG-emission- and fossil-energy-saving potentials of up to 30.6 t CO2eq C ha−1 y−1 and 429 GJ ha−1 y−1 ,respectively. Transport distance was identified as an important cost factor. Negative carbon mitigation costs of –78€−1 CO2eq C were recorded for local biomass use. The OPTIMISC results demonstrate the potential of miscanthus as a crop for marginal sites and provide information and technologies for the commercial implementation of miscanthus-based value chains.

There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.