Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 510360
Title Methods for global sensitivity analysis in life cycle assessment
Author(s) Groen, Evelyne A.; Bokkers, Eddy; Heijungs, Reinout; Boer, Imke J.M. de
Source The International Journal of Life Cycle Assessment 22 (2017)7. - ISSN 0948-3349 - p. 1125 - 1137.
Department(s) Animal Production Systems
Publication type Refereed Article in a scientific journal
Publication year 2017
Keyword(s) Correlation - Key issue analysis - Random balance design - Regression - Sensitivity analysis - Sobol’ sensitivity index - Variance decomposition
Abstract Purpose: Input parameters required to quantify environmental impact in life cycle assessment (LCA) can be uncertain due to e.g. temporal variability or unknowns about the true value of emission factors. Uncertainty of environmental impact can be analysed by means of a global sensitivity analysis to gain more insight into output variance. This study aimed to (1) give insight into and (2) compare methods for global sensitivity analysis in life cycle assessment, with a focus on the inventory stage. Methods: Five methods that quantify the contribution to output variance were evaluated: squared standardized regression coefficient, squared Spearman correlation coefficient, key issue analysis, Sobol’ indices and random balance design. To be able to compare the performance of global sensitivity methods, two case studies were constructed: one small hypothetical case study describing electricity production that is sensitive to a small change in the input parameters and a large case study describing a production system of a northeast Atlantic fishery. Input parameters with relative small and large input uncertainties were constructed. The comparison of the sensitivity methods was based on four aspects: (I) sampling design, (II) output variance, (III) explained variance and (IV) contribution to output variance of individual input parameters. Results and discussion: The evaluation of the sampling design (I) relates to the computational effort of a sensitivity method. Key issue analysis does not make use of sampling and was fastest, whereas the Sobol’ method had to generate two sampling matrices and, therefore, was slowest. The total output variance (II) resulted in approximately the same output variance for each method, except for key issue analysis, which underestimated the variance especially for high input uncertainties. The explained variance (III) and contribution to variance (IV) for small input uncertainties were optimally quantified by the squared standardized regression coefficients and the main Sobol’ index. For large input uncertainties, Spearman correlation coefficients and the Sobol’ indices performed best. The comparison, however, was based on two case studies only. Conclusions: Most methods for global sensitivity analysis performed equally well, especially for relatively small input uncertainties. When restricted to the assumptions that quantification of environmental impact in LCAs behaves linearly, squared standardized regression coefficients, squared Spearman correlation coefficients, Sobol’ indices or key issue analysis can be used for global sensitivity analysis. The choice for one of the methods depends on the available data, the magnitude of the uncertainties of data and the aim of the study.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.