Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 510610
Title Simulation nitrogen-limited crop growth with SWAP/WOFOST : process descriptions and user manual
Author(s) Groenendijk, Piet; Boogaard, Hendrik; Heinen, Marius; Kroes, J.G.; Supit, Iwan; Wit, Allard de
Source Wageningen : Wageningen Environmental Research (Wageningen Environmental Research rapport 2721) - 59
Department(s) Alterra - Sustainable soil management
Alterra - Earth informatics
Alterra - Soil, water and land use
Earth System Science
Alterra - Climate change and adaptive land and water management
WIMEK
PE&RC
Publication type Research report
Publication year 2016
Keyword(s) crops - growth - soil - nitrogen - organic matter - mineralization - leaching - simulation models - nitrates - gewassen - groei - bodem - stikstof - organische stof - mineralisatie - uitspoelen - simulatiemodellen - nitraten
Categories Crop Sciences (General) / Soil Fertility
Abstract This report describes a soil nitrogen module (Soil-N), which is combined with the agro-hydrological model, SWAP, and the crop growth model, WOFOST. The core of the Soil-N module is a description of the nitrogen cycle, which is coupled to the organic matter cycle based upon the RothC-26.3 model. Nitrogen can be supplied to the soil as different types of fertilizer applications and through mineralisation of organic nitrogen. Ammonium and nitrate balances are calculated including uptake by plant roots, de-nitrification and leaching of nitrate. Data exchange is on a daily base. The partitioning of nitrogen within crops and the nitrogen contents of crop residues are calculated by WOFOST and passed to the Soil-N module. SWAP generates the data for establishing the water balance of the soil compartment for which the Soil-N perform the simulations. Nitrogen uptake by the crop is calculated as the minimum of the demand by the crop and the availability of nitrogen in the soil. The crop production rate is reduced when the mineral nitrogen stock is limited. Nitrogen-fixation is based on a simple approach. An improved sub-model for phenological stages of soybean was implemented. Increasing atmospheric CO2 concentrations can be accounted for. The innovated integrated model was tested using data sets from The Netherlands, China and Argentina, for which examples are given. This new model can be used as a tool in studies, in which both water and nitrogen can be limited for crop growth.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.