Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 510719
Title Daytime formation of nitrous acid at a coastal remote site in Cyprus indicating a common ground source of atmospheric HONO and NO
Author(s) Meusel, Hannah; Kuhn, Uwe; Reiffs, Andreas; Mallik, Chinmay; Harder, Hartwig; Martinez, Monica; Schuladen, Jan; Bohn, Birger; Parchatka, Uwe; Crowley, John N.; Fischer, Horst; Tomsche, Laura; Novelli, Anna; Hoffmann, Thorsten; Janssen, Ruud H.H.; Hartogensis, Oscar; Pikridas, Michael; Vrekoussis, Mihalis; Bourtsoukidis, Efstratios; Weber, Bettina; Lelieveld, Jos; Williams, Jonathan; Pöschl, Ulrich; Cheng, Yafang; Su, Hang
Source Atmospheric Chemistry and Physics 16 (2016)22. - ISSN 1680-7316 - p. 14475 - 14493.
DOI http://dx.doi.org/10.5194/acp-16-14475-2016
Department(s) Meteorology and Air Quality
WIMEK
Publication type Refereed Article in a scientific journal
Publication year 2016
Abstract

Characterization of daytime sources of nitrous acid (HONO) is crucial to understand atmospheric oxidation and radical cycling in the planetary boundary layer. HONO and numerous other atmospheric trace constituents were measured on the Mediterranean island of Cyprus during the CYPHEX (Cyprus PHotochemical EXperiment) campaign in summer 2014. Average volume mixing ratios of HONO were 35 pptv (±25 pptv) with a HONO/NOx ratio of 0.33, which was considerably higher than reported for most other rural and urban regions. Diel profiles of HONO showed peak values in the late morning (60 ± 28 pptv around 09:00 local time) and persistently high mixing ratios during daytime (45 ± 18 pptv), indicating that the photolytic loss of HONO is compensated by a strong daytime source. Budget analyses revealed unidentified sources producing up to 3.4 × 106 molecules cm-3 s-1 of HONO and up to 2.0 × 107 molecules cm-3 s-1 NO. Under humid conditions (relative humidity 2 Combining double low line 0.72), suggesting a common source that may be attributable to emissions from microbial communities on soil surfaces.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.