Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 511211
Title Reaction pathways in catechol/primary amine mixtures : A window on crosslinking chemistry
Author(s) Yang, Juan; Saggiomo, Vittorio; Velders, Aldrik H.; Cohen Stuart, Martien; Kamperman, Marleen
Source PLoS One 11 (2016)12. - ISSN 1932-6203 - 17 p.
DOI https://doi.org/10.1371/journal.pone.0166490
Department(s) Physical Chemistry and Soft Matter
BioNanoTechnology
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2016
Abstract

Catechol chemistry is used as a crosslinking tool abundantly in both natural organisms (e.g. mussels, sandcastle worms) and synthetic systems to achieve the desired mechanical properties. Despite this abundance and success, the crosslinking chemistry is still poorly understood. In this study, to simplify the system, yet to capture the essential chemistry, model compounds 4-methyl catechol and propylamine are used. The reaction of 4-methyl catechol (2 mM) with propylamine (6 mM) is carried out in the presence of NaIO4 (2 mM) in 10 mM Na2CO3 aqueous solution. A variety of spectroscopic/spectrometric and chromatographic methods such as 1H NMR, LC-MS, and UV-VIS are used to track the reaction and identify the products/intermediates. It is found that the crosslinking chemistry of a catechol and an amine is both fast and complicated. Within five minutes, more than 60 products are formed. These products encompass 19 different masses ranging from molecular weight of 179 to 704. By combining time-dependent data, it is inferred that the dominant reaction pathways: the majority is formed via aryloxyl-phenol coupling and Michael-type addition, whereas a small fraction of products is formed via Schiff base reactions.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.