Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 512746
Title A Privacy-by-Design Contextual Suggestion System for Tourism
Author(s) Efraimidis, Pavlos; Drosatos, George; Arampatzis, Avi; Stamatelatos, Giorgos; Athanasiadis, Ioannis
Source Journal of Sensor and Actuator Networks 5 (2016)2. - ISSN 2224-2708
DOI https://doi.org/10.3390/jsan5020010
Department(s) Information Technology
WASS
Publication type Refereed Article in a scientific journal
Publication year 2016
Keyword(s) privacy - personalization - contextual suggestion - privacy by design - non-invasiveness - tourism - mobile computing - recommendation systems
Abstract We focus on personal data generated by the sensors and through the everyday usage of smart devices and take advantage of these data to build a non-invasive contextual suggestion system for tourism. The system, which we call Pythia, exploits the computational capabilities of modern smart devices to offer high quality personalized POI (point of interest) recommendations. To protect user privacy, we apply a privacy by design approach within all of the steps of creating Pythia. The outcome is a system that comprises important architectural and operational innovations. The system is designed to process sensitive personal data, such as location traces, browsing history and web searches (query logs), to automatically infer user preferences and build corresponding POI-based user profiles. These profiles are then used by a contextual suggestion engine to anticipate user choices and make POI recommendations for tourists. Privacy leaks are minimized by implementing an important part of the system functionality at the user side, either as a mobile app or as a client-side web application, and by taking additional precautions, like data generalization, wherever necessary. As a proof of concept, we present a prototype that implements the aforementioned mechanisms on the Android platform accompanied with certain web applications. Even though the current prototype focuses only on location data, the results from the evaluation of the contextual suggestion algorithms and the user experience feedback from volunteers who used the prototype are very positive.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.