Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 513014
Title Impacts of dietary changes on global scale nitrogen losses to air and water
Author(s) Vries, W. de; Wei, Jia; Kros, J.; Windhorst, David; Breuer, Lutz
Event 7th International Nitrogen Initiative 2016, Melbourne, 2016-12-04/2016-12-08
Department(s) Alterra - Sustainable soil management
Environmental Systems Analysis Group
Publication type Abstract in scientific journal or proceedings
Publication year 2016
Abstract A simple fast calculation approach has been developed that gives insight in the overall effects of dietary changes on nitrogen (N) emission to air and water by 2050 for ten identified world regions. The impact of dietary change on N fertilizer and N manure applications and related emissions was based on the consumption of crop and animal commodities, making use of the FAO data from 1961 to 2005 and extrapolating the data towards 2050 in response to five dietary change scenarios. Scenarios included a ‘North American Diet’ (NAD), a ‘Same Diet’ (SD), a ‘Business-as-Usual’ (BAU) diet; a ‘Demitarian Diet’ (DD) and a ‘Vegan Diet’ (VD). The calculated N2O and NH3 emissions and N leaching/runoff for the reference year (i.e. 2005) showed good agreement with various literature estimates. N2O was the most persistent problem, even increasing under the VD scenario, due to the increased use of N fertilizer to cultivate food crops and the assumed high contribution of N fertilizer to N2O emission. NH3 emissions increased three times in the NAD scenario, while it decreased by 13% in the VD scenario. This happens because NH3 emissions mainly follow the N manure trends. In the VD scenario, N leaching/runoff remains equal to 2005, while it increases by 145% in the NAD scenario. Overall, results show that dietary change affects most strongly NH3 emissions, followed by N leaching/runoff and then N2O emissions. Only a severe reduction in meat consumption can substantially reduce N losses with the exception of N2O emissions.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.