Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 514800
Title Crystals, glasses and gels : synthesis and phase behavior of soft colloids
Author(s) Appel, Jeroen
Source University. Promotor(en): Frans Leermakers, co-promotor(en): Joris Sprakel. - Wageningen : Wageningen University - ISBN 9789463430104 - 139
Department(s) Physical Chemistry and Soft Matter
VLAG
Publication type Dissertation, internally prepared
Publication year 2017
Keyword(s) colloids - crystals - gels - phases - physics - colloidal properties - physical chemistry - colloïden - kristallen - fasen (chemie) - fysica - colloïdale eigenschappen - fysische chemie
Categories Physical Chemistry
Abstract

Colloidal suspensions are an experimental model system for studying structural and mechanical properties of soft materials. These properties are manifested differently in colloidal solid-like phases such as crystals, glasses and gels. To further understand relations between structural and mechanical properties, it is necessary to develop well-defined colloids and employ techniques such as microscopy and rheology to study the structure and mechanics of their suspensions. This thesis presents five experimental chapters dealing with the synthesis and characterization of colloids and their suspensions. The first part of the thesis describes facile synthesis methods for latex, conjugated polymer and microgel colloids. In the second part, measurements of crystal-to-glass and glass-to-gel phase transformations in dense suspensions of microgel particles are presented.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.