Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 519933
Title Genome plasticity impacts adaptive genome evolution in the vascular wilt pathogen Verticillium
Author(s) Seidl, M.F.; Faino, L.; Cook III, D.E.; Kramer, H.M.; Shi-Kunne, X.; Berg-Velthuis, G.C.M. van den; Thomma, B.P.H.J.
Source In: Abstract Book 29th Fungal Genetics Conference Asilomar 17, Pacific Grove, CA, USA 14-19 March 2017. - Genetics Society of America - p. 80 - 81.
Event 29th Fungal Genetics Conference, Pacific Grove, CA, 2017-03-14/2017-03-19
Department(s) Laboratory of Phytopathology
EPS
Publication type Abstract in scientific journal or proceedings
Publication year 2017
Abstract Genome plasticity enables organisms to adapt to environmental changes and to occupy novel niches. This is established by mechanisms ranging from single-nucleotide polymorphisms to large-scale chromosomal variations, all of which contribute to differences in chromosomal size, organization and gene content. While these mechanisms operate in all organisms, they are particularly relevant for plant pathogens that engage in a co-evolutionary arms race with their hosts. Plant pathogens secrete so-called effectors that contribute to host colonization and counteract host immunity. Effector genes often cluster in highly plastic, transposon-rich genomic regions. However, mechanistic understanding of the evolution of these plastic genomic regions remains scarce. We study these molecular mechanisms in the fungal genus Verticillium that contains economically and ecologically important plant pathogens, among which Verticillium dahliae is the most notorious pathogen that causes vascular wilt disease on >200 plant species. Using long-read sequencing technology, we completely assembled two V. dahliae strains. By comparative genomics, we established that transposable elements play important roles in shaping the genome of V. dahliae. Plastic genomic regions in V. dahliae that contain all known effectors evolve by extensive genomic rearrangements that are mediated by erroneous double-strand breaks, often over transposons. Extensive genomic rearrangements are not only restricted to V. dahliae, but also occur in related Verticillium species. Furthermore, recent segmental duplications are enhanced in the plastic regions. These regions, in contrast to the core genome, are also enriched in active transposons that further contribute to local plasticity. In fungi, transposons are located in tightly condensed chromatin, so called heterochromatin, that is supposed to suppress transposon activity and repress structural variations. In contrast, many fungal pathogens have highly plastic transposon-rich regions. Therefore, research into chromatin opens new avenues to link genome organization, genome plasticity and adaptive genome evolution in fungal pathogens.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.