Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 520455
Title BABY BOOM (BBM) ChIP-seq in Arabidopsis somatic embryo tissue
Author(s) Horstman, A.; Muino Acuna, J.M.; Boutilier, K.A.
Department(s) PRI BIOS Plant Development Systems
EPS
PPO/PRI - Bioscience
Publication type Dataset
Publication year 2014
Keyword(s) Arabidopsis thaliana - GSE52400 - PRJNA227780
Abstract After fertilization, a plant's life relies on progression through embryogenesis and maintenance of the stem cell niches from which all post-embryonic organs arise. BABY BOOM (BBM) and other members of the AINTEGUMENTA-LIKE (AIL)/PLETHORA (PLT) clade of the AP2-type transcription factor family play important roles controlling these processes in Arabidopsis thaliana (Arabidopsis). Development of the plt2/bbm double mutant is blocked at during early embryogenesis (Galinha et al., 2007), and combinations of bbm with plt1 and plt3 lead to short roots as a result of meristem differentiation. In contrast, overexpression of BBM in Arabidopsis seedlings induces the formation of somatic embryos on cotyledons and leaves (Boutilier, 2002), showing that BBM is a key regulator of cell identity and proliferation. Although the functions of BBM and other AIL genes have been well described, the molecular mode of action of these transcription factors has not been well examined (reviewed in Horstman et al., 2013). Our previous study provided the first insight into BBM molecular function by identifying BBM targets through a microarray-based approach (Passarinho, 2008), but only a few BBM targets have been functionally characterized. To obtain a better understanding of BBM function, we identified direct BBM targets using a chromatin immunoprecipitation (ChIP) combined with massively-parallel DNA sequencing (ChIP-seq) approach.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.