Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 522732
Title Potatoes, pathogens and pests : effects of genetic modifi cation for plant resistance on non-target arthropods
Author(s) Lazebnik, Jenny
Source University. Promotor(en): Joop van Loon; Marcel Dicke. - Wageningen : Wageningen University - ISBN 9789463431620 - 151
Department(s) Laboratory of Entomology
PE&RC
Publication type Dissertation, internally prepared
Publication year 2017
Keyword(s) solanum tuberosum - potatoes - oomycetes - phytophthora infestans - genetic engineering - transgenic plants - disease resistance - risk assessment - nontarget organisms - arthropods - insect pests - herbivores - trophic levels - ecological risk assessment - greenhouse experiments - field experimentation - aardappelen - oömyceten - genetische modificatie - transgene planten - ziekteresistentie - risicoschatting - niet-doelorganismen - geleedpotigen - insectenplagen - herbivoren - trofische graden - ecologische risicoschatting - kasproeven - experimenteel veldonderzoek
Categories Biosafety, Risk Evaluation / Plant Biotechnology
Abstract

Currently, fungicides are necessary to protect potato crops against late blight, Phytophthora infestans, one of the world’s most damaging crop pathogens. The introgression of plant resistance genes from wild potato species targeted specifically to the late blight pathogen into susceptible potato varieties may alleviate the environmental impact of chemical control. Genetically modified plants are subject to an environmental risk assessment, and this includes testing for risks to the non-target arthropod community associated with the crop. The thesis begins with a review about the main plant defense responses and their role in influencing sequential interactions between herbivores and plant pathogens. The experimental chapters each focus on different aspects of the interaction between potato plants (both resistant and susceptible), the target pathogen (P. infestans) and several non-target insects. With each chapter, the scope widens: from the molecular gene expression in potato leaves in response to sequential attacks, to field scale biodiversity analyses. At the molecular level, one of the main findings was that the genomic position of the Rpi-vnt1 insertion conferring resistance to P. infestans influenced potato gene expression measured in leaves, when interacting with the non-target insect pests Myzus persicae (Green peach aphid) and Leptinotarsa decemlineata (Colorado potato beetle). Insect performance differed between the resistant GM and susceptible non-GM comparator. In the following chapter, the differences in insect performance were tested across a range of conventionally bred cultivars varying in resistance to P. infestans. Differences in M. persicae performance between several cultivars greatly outweighed the differences previously detected between the GM and non-GM comparator. These results are crucial in shaping the way risk is assessed in the context of GM crops, and these results are supported in our experiments assessing effects on biodiversity with pitfall traps in the field. The third trophic level was also addressed by comparing the performance of the parasitoid Aphidius colemani reared on GM and non-GM fed aphids, both with an without exposure to P. infestans. Differences in parasitoid performance were only found on the susceptible cultivar when inoculated with P. infestans. In the last experimental chapter the risk assessment is taken to the field comparing pitfall trap catches over two years and in two countries. Different methods for statistical analysis of biodiversity data were compared to arrive at recommendations for such analysis in the framework of environmental risk assessments. Drawing on these lessons, the discussion ends with ideas for the development of protocols for environmental risk assessments in the light of expected scientific progress in agricultural biotechnology.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.