Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 522978
Title Harvesting and cell disruption of microalgae
Author(s) Lam, Gerard Pieter 't
Source University. Promotor(en): Rene Wijffels; Michel Eppink, co-promotor(en): Marian Vermue. - Wageningen : Wageningen University - ISBN 9789463431736 - 206
Department(s) VLAG
Bioprocess Engineering
Publication type Dissertation, internally prepared
Publication year 2017
Keyword(s) algae - harvesting - flocculation - polymers - chlorella vulgaris - biorefinery - electric field - organelles - algen - oogsten - uitvlokking - polymeren - bioraffinage - elektrisch veld - organellen
Categories Biotechnology (General)
Abstract

Microalgae are a potential feedstock for various products. At the moment, they are already used as feedstock for high-valuable products (e.g. aquaculture and pigments).

Microalgae pre-dominantly consist out of proteins, lipids and carbohydrates. This makes algae an interesting feedstock for various bulk-commodities. To successfully produce bulk-commodities, a multi-product biorefinery should be adopted that aims on production of both bulk- and high value co-products. In the downstream process, however, harvesting- and cell disruption are technological hurdles for cost effective multi-product biorefinery.

Flocculation is considered as a low-cost harvesting process. Flocculating microalgae at high salinities used to be not feasible We demonstrated that marine microalgae can successfully be flocculated and harvested by using cationic polymers.

In the second part of this thesis we studied Pulsed Electric Field (PEF) as potential cheap and non-disruptive technology to open microalgae. PEF-treatment evokes openings/’holes’ in micro-organisms. PEF in combination with a pre-treatment to weaken the cell wall resulted in release of proteins from microalgae at low energy consumption.

Recent advances in technology development learned that harvesting of micro-algae is no longer a bottleneck. Future research and development should focus on cell disruption and mild extraction technologies. Costs for the biorefinery will decrease by process simplification. For that unit operations for cell disruption and extraction need to be integrated.

This project was part of a large public private partnership program AlgaePARC biorefinery (www.AlgaePARC.com). Objective of this program is to develop a more sustainable and economically feasible microalgae production process. For that all biomass components (e.g. proteins, lipids, carbohydrates) should be used at minimal energy requirements and minimal costs while keeping the functionality of the different biomass components. Biorefining of microalgae is very important for the selective separation and use of the different functional biomass components.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.