Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 523329
Title The effect of onion exposure on gene expression profiles in intestinal Caco-2 cells
Author(s) Wit, N.J.W. de; Govers, C.C.F.M.; Boekschoten, M.V.; Mes, J.J.
Department(s) FBR Consumer Science & Health
Chair Nutrition Metabolism and Genomics
VLAG
Publication type Dataset
Publication year 2016
Keyword(s) Homo sapiens - GSE83893 - PRJNA327311
Abstract Background: Human intestinal tissue samples are barely accessible to study potential health benefits of nutritional compounds. Numbers of animals used in animal trials, however, need to be minimalized. Therefore, in this study we explored the applicability of an in vitro model, namely human intestinal Caco-2 cells, to study the effect of food compounds on (intestinal) health. In vitro digested yellow (YOd) and white onion extracts (WOd) were used as model food compounds and transcriptomics was applied to obtain more insight into their mode of actions in the intestinal cells. Methods: Caco-2 cells were incubated with in vitro digested onion extracts for 6 hours, total RNA was extracted and Affymterix Human Gene 1.1 ST arrays were used to analyze the gene expression profiles. To identify onion-induced gene expression profiles in Caco-2 cells, digested yellow onion and white onion samples were compared to a digest control samples. Results: We found that yellow onion (n=5586, p<0.05) had a more pronounced effect on gene expression than white onion (n=3688, p<0.05). However, a substantial number of genes (n=3281, p<0.05) were affected by both onion variants in the same direction. Pathway analyses revealed that mainly processes related to oxidative stress, and especially the Keap1-Nrf2 pathway, were affected by onions. Our data fit with previous in vivo studies showing that the beneficial effects of onions are mostly linked to their antioxidant properties. Conclusion: our data indicate that the in vitro Caco-2 intestinal model can be used to determine modes of action of nutritional compounds and can thereby reduce the number of animals used in conventional nutritional intervention studies.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.