Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 523389
Title Effects of combined flocculant – Lanthanum modified bentonite treatment on aquatic macroinvertebrate fauna
Author(s) Waajen, G.; Pauwels, M.; Lürling, M.
Source Water Research 122 (2017). - ISSN 0043-1354 - p. 183 - 193.
DOI https://doi.org/10.1016/j.watres.2017.05.075
Department(s) Aquatic Ecology and Water Quality Management
WIMEK
Publication type Refereed Article in a scientific journal
Publication year 2017
Keyword(s) Cyanobacteria - Iron-III-chloride - Lake restoration - Macrofauna - Phoslock
Abstract A low dose flocculant (FeCl3), combined with lanthanum modified bentonite (LMB) as phosphate-binding agent, has been applied for eutrophication management in Lake De Kuil (The Netherlands). After the treatment, the state of the lake shifted from hypertrophic to mesotrophic. Although macroinvertebrate fauna is important for lake ecosystems, the knowledge of its response to this lake restoration method is fragmented and scarce. Because insight in the macroinvertebrate fauna response is important to assess future applications, pre and post application macroinvertebrate assemblages were identified in Lake De Kuil. The research was accompanied by a microcosm experiment in which the effects of LMB, FeCl3 and LMB + FeCl3 were studied on macroinvertebrate communities. Results show the reduction of macroinvertebrate numbers and taxa during the first month following the application. The number of Gastropoda was strikingly reduced one month after the application. One year after the application, the macroinvertebrate numbers and taxa exceeded the pre-application situation and Gastropoda and Oligochaeta prospered. The effects one month after the treatment are most likely due to the combination of physical impacts of the use of bentonite and chemical impacts of the use of FeCl3, while effects after one year are likely attributed to the shift in trophic state of the lake.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.