Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 523469
Title Data from: Acquired versus innate prey capturing skills in super-precocial live-bearing fish
Author(s) Lankheet, M.J.M.; Stoffers, Twan; Leeuwen, J.L. van; Pollux, B.J.A.
Department(s) Experimental Zoology
IMARES Onderzoeksformatie
Publication type Dataset
Publication year 2016
Keyword(s) pre capture behaviour - innate motor patterns - postnatal development - viuo-motor coordination - pectoral fins - livebearing fish - Girardinus metallicus - Poeciliidae
Abstract Live-bearing fish start hunting for mobile prey within hours after birth, an example of extreme precociality. Because prenatal, in utero, development of this behaviour is constrained by the lack of free-swimming sensory-motor interactions, immediate success after birth depends on innate, evolutionarily acquired patterns. Optimal performance however requires flexible adjustment to an unpredictable environment. To distinguish innate from postnatally developing patterns we analysed over 2000 prey capture events for 28 metallic livebearers (Girardinus metallicus; Poeciliidae), during their first 3 days after birth. We show that the use of synchronous pectoral fin beats for final acceleration and ingestion is fixed and presumably innate. It allows for direct, symmetrical control of swimming speed and direction, while avoiding head yaw. Eye movements and body curvatures, however, change considerably in the first few days, showing that eye-tail coordination requires postnatal development. The results show how successful prey captures for newborn, live-bearing fish are based on a combination of fixed motor programmes and rapid, postnatal development.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.