Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 525805
Title Muscle mitochondrial stress-induced metabolic adaptations do not require FGF21 action
Author(s) Schothorst, Evert van; Ost, Mario; Stelt, Inge van der; Klaus, Susanne; Keijer, Jaap
Department(s) Human and Animal Physiology
VLAG
WIAS
Publication type Dataset
Publication year 2016
Keyword(s) Mus musculus - GSE71749 - PRJNA291997
Abstract Fibroblast growth factor 21 (FGF21) is a key metabolic regulator which was recently discovered as stress-induced myokine and common denominator of muscle mitochondrial disease. However, its precise function and pathophysiological relevance remains unknown. Here we demonstrate that white adipose tissue (WAT) is the major target of muscle mitochondrial stress-induced FGF21. Strikingly, substantial browning and metabolic remodeling of subcutaneous WAT, together with the reduction of circulating triglycerides and cholesterol are fully FGF21 dependent. Unexpectedly and in contrast to prior expectations, we found a negligible role of FGF21 in muscle stress-related improved glycemic control, obesity resistance and hepatic lipid homeostasis. Furthermore, we show that the protective muscle mitohormesis and metabolic stress adaptation does not require FGF21 action. Taken together, our data imply that although FGF21 drives WAT remodeling, this effect and FGF21 as stress hormone per se may not be essential for the adaptive response under muscle mitochondrial stress conditions.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.