Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 525994
Title IRE1alpha is an endogenous substrate of endoplasmic reticulum-associated degradation
Author(s) Sun, Shengyi; Shi, Guojun; Sha, Haibo; Ji, Yewei; Han, Xuemei; Shu, Xin; Ma, Hongming; Takamasa, Inoue; Gao, Beixue; Bu, Pengcheng; Guber, Robert D.; Shen, Xiling; Lee, Ann H.; Iwawaki, Takao; Paton, Adrienne W.; Paton, James C.; Fang, Deyu; Tsai, Billy; Yates III, John R.; Wu, Haoquan; Kersten, Sander; Long, Qiaoming; Duhamel, Gerald E.; Simpson, Kenneth W.; Qi, Ling
Department(s) Chair Nutrition Metabolism and Genomics
VLAG
Publication type Dataset
Publication year 2015
Keyword(s) Mus musculus - GSE70563 - PRJNA289019
Abstract Endoplasmic reticulum-associated degradation (ERAD) represents a principle quality control (QC) mechanism to clear misfolded proteins in the ER; however, its physiological significance and the nature of endogenous ERAD substrates remain largely unknown. Here we discover that IRE1alpha, the sensor of unfolded protein response (UPR), is a bona fide substrate of the Sel1L-Hrd1 ERAD complex. Mechanistically, ERAD-mediated IRE1alpha degradation occurs in a Bip-dependent manner under basal conditions and is attenuated in response to ER stress. Both intramembrane hydrophilic residues of IRE1alpha and lectin protein OS9 are required for IRE1alpha degradation. ERAD deficiency causes IRE1alpha protein stabilization, accumulation and mild activation both in vitro and in vivo, leading to cellular hypersensitivity to ER stress and inflammation. Furthermore, though enterocyte-specific Sel1L-knockout mice (Sel1LΔIEC) are viable and appear normal, they are more susceptible to experimental colitis in an IRE1alpha-dependent but CHOP-independent manner. Collectively, these results demonstrate that Sel1L-Hrd1 ERAD serves a distinct, essential function in restraint of IRE1alpha signaling in vivo by managing its protein turnover.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.