Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 526005
Title Comparison of the effects of five dietary fibers on mucosal transcriptional profiles, and luminal microbiota composition and SCFA concentrations in murine colon
Author(s) Lange, Katja; Muller, Michael; Hooiveld, Guido
Department(s) Human Nutrition (HNE)
Chair Nutrition Metabolism and Genomics
VLAG
Publication type Dataset
Publication year 2015
Keyword(s) Mus musculus - GSE59494 - PRJNA255428
Abstract Consumption of diets rich in fibers has been associated with several beneficial effects on gastrointestinal health. However, detailed studies on the molecular effects of fibers in colon are limited. In this study we investigated and compared the influence of five different fibers on the mucosal transcriptome, and luminal microbiota and SCFA concentrations in murine colon. Mice were fed diets enriched with fibers that differed in carbohydrate composition, namely inulin (IN), oligofructose (FOS), arabinoxylan (AX), guar gum (GG), resistant starch (RS) or a control diet (corn starch) for 10 days. Gene expression profiling revealed the regulation of specific, but also overlapping sets of epithelial genes by each fiber, which on a functional level were mainly linked to cell cycle and various metabolic pathways including fatty acid oxidation, tricarboxylic acid cycle, and electron transport chain. In addition, the transcription factor PPAR was predicted to be a prominent upstream regulator of these processes. Microbiota profiles were distinct per dietary fiber, but the fibers IN, FOS, AX and GG induced a common change in microbial groups. All dietary fibers, except resistant starch, increased SCFA concentrations but to a different extent. Multivariate data integration revealed strong correlations between the expression of genes involved in energy metabolism and the relative abundance of bacteria belonging to the group of Clostridium cluster XIVa, that are known butyrate producers. These findings illustrate the potential of multivariate data analysis to unravel simple relationships in complex systems.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.