Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 526289
Title High-resolution mass spectrometry for the analysis of interfacial kinetics of organic surface reactions
Author(s) Sen, Rickdeb
Source University. Promotor(en): Han Zuilhof. - Wageningen : Wageningen University - ISBN 9789463436243 - 308
Department(s) Laboratory for Organic Chemistry
Publication type Dissertation, internally prepared
Publication year 2017
Keyword(s) surface chemistry - unimolecular films - chemical reactions - analytical methods - mass spectrometry - oppervlaktechemie - unimoleculaire films - chemische reacties - analytische methoden - massaspectrometrie
Categories Colloid and Surface Chemistry

In this thesis, XPS and DART–HRMS have been used in close conjugation to supplement each other, since the latter is a relatively new addition to surface chemist’s repertoire that – after development – needed a firm comparison to build up a reputation of its own. The strength of our approach has been underlined by the high correlation between these two independent analytical techniques. Central to our approach has been the formation of mixed monolayers in case of aluminum oxide substrates. As presented in Chapters 2, 3 and 4, we have succeeded in the rapid formation of range stable, covalently bound mixed monolayers. The subsequent development of a general and fast analytical technique to determine the interfacial reaction kinetics, including the activation parameters DH‡ and DS‡, provided unparalleled insights. We have developed a “MS–ionizable tag” technique, which has been applied for the analysis of surface–bound organic reactions, to the best of our knowledge, for the first time.

The Strain–Promoted Alkyne–Azide Cycloaddition (SPAAC) reaction was chosen as a model reaction given the fact that its kinetics had been well–studied in solution. As shown in Chapter 2, the microenvironment around the reactive surface group was carefully controlled by the length of the inert alkyl chains surrounding it. We observed a few interesting trends which could be of great interest to future surface chemists. First, the SPAAC reaction – which is a click reaction in solution – does not retain this nature on the surface (It does not proceed to full conversion and converges sluggishly to around 37% yield after significant temporal passage). A partially accessible microenvironment, where the motion of reactive groups is slightly restricted, was found to provide a high rate with the highest surface yield. In contrast, a freely accessible reactive moiety afforded a lower surface yield albeit with the highest overall rate. Finally, a buried microenvironment led to the highest overall rate albeit with a lower surface yield. As a corollary, for the surface–bound SPAAC reaction we can compare the partially accessible microenvironment to a marathon runner who is able to run further but at a pace slower than a sprinter (free microenvironment). This provides the surface chemist with a handle for tuning the monolayer as per her/his reaction goals.

Harnessing the valuable insights gained from the SPAAC reaction, our concept of ionizable MS tag coupled with DART–HRMS was further extended to a more novel and yet unstudied interfacial reaction in Chapter 3. The Strain–Promoted Oxidation–Controlled cycloalkyne–1,2–Quinone (SPOCQ) cycloaddition was applied for the first time on a surface and afforded a quantitative yield for a free microenvironment in under 4 h. It is to be noted here, that for the first time a 100% (quantitative) metal–free click reaction was observed at a surface. This proved that our approach of engineering the microenvironment around the reactive site provides a distinct edge needed to attain quantitative yields. Quinones are hard to synthesize/store/use in solution given their high propensity to polymerize. However, we demonstrated that on the surface, quinones can be easily generated and stored over–extended period of time by a facile periodate oxidation. Auto–polymerization of surface–bound quinones is precluded by their tether and enforced distal separation by surrounding inert alkyl chains (3:1 ratio). The wider application of this interesting mixture has been further rigorously demonstrated in later chapters too. The bioorthogonality of the SPOCQ reaction coupled with its higher speed and its quantitative yields on the surface are definitely its most salient features.

After studying strain–promoted click reactions on the surface (culminating for SPOCQ in quantitative conversion within 4 h), the question arose if DART–HRMS could also be used to reproducibly and precisely determine a different class of cycloadditions, for which we selected the interfacial inverse electron demand Diels–Alder (IEDDA) reaction as this reaction was reported to be really fast –at least for click reactions– in solution. This was studied in Chapter 4 extensively and we surpassed our previous kinetic record (SPOCQ) by obtaining a quantitative yield in a mere 15 min. The other interesting observation of this study was that reversing the reaction counterparts on the surface produced a discernible reaction rate difference. We found that one of the reactants when tethered in a particular stereochemistry (exo– form) gave the highest surface coverage (100%) within the shortest amount of time. This was also the first time that the effect of diastereomerism on interfacial reaction rates was studied.

In Chapter 5, covalent modification of native non–activated mica has been carried out utilizing catechol linkers. Previous studies for mica modification produced poorly defined polymeric structures on the surface or required extensive and tedious organic synthesis. We have addressed both these issues head–on in this thesis. Well–defined and characterized ultrathin layers were constructed on mica using a catechol–based molecule involving a two–step synthesis. Mica being atomically flat provides an ideal surface upon which to study various phenomena by AFM and other forms of microscopy. However, most research until now was restricted to simply drop–casting the pre–fabricated moieties followed by studying their final structures. Our method now allows for the step–wise formation and characterization of these very interesting structures. Along with it, we also performed several click attachment chemistries on these ultrathin layers which can be harnessed by surface chemists to put various functional and structurally complex moieties on the surface. This opens the pathway for the attachment of more complex architectures on the surface with higher functionality along with the ability to study their formation in a step–wise controlled fashion.

Overall, this thesis wishes to understand organic surface chemistry and several of its intricate mysteries. It clearly outlines several modification techniques and unravels interfacial kinetics of several interesting “metal–free click reactions”. It strives to rationalize the activation parameters in conjunction with classical organic chemistry and gives details on how surrounding “inert” alkyl chains can play a profound role in reaction rates. Lastly, we have striven to and achieved rapid and quantitative reactions on the surface by virtue of optimization of this microenvironment. Personally I believe, we have treaded on a road seldom traveled and unraveled a new understanding about molecular interactions on the ever–interesting and an infinitely–complex surface.

There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.