Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 530669
Title Strigolactone biosynthesis requires the symbiotic GRAS-type transcription factors NSP1 and NSP2
Author(s) Liu, Wei; Kohlen, Wouter; Lillo, Alessandra; Camp, Rik op den; Ivanov, Sergey; Hartog, Marijke; Limpens, Erik; Jamil, Muhammad; Yang, Wei-Cai; Hooiveld, Guido; Charnikhova, Tatsiana; Bouwmeester, Harro; Bisseling, Ton; Geurts, Rene
Department(s) Laboratory of Molecular Biology
Laboratory of Plant Physiology
Chair Nutrition Metabolism and Genomics
Publication type Dataset
Publication year 2011
Keyword(s) Medicago truncatula - GSE26548 - PRJNA136629
Abstract Legume GRAS-type transcription factors NSP1 and NSP2 are essential for Rhizobium Nod factor-induced nodulation. Both proteins are considered to be Nod factor response factors regulating gene expression upon symbiotic signalling. However, legume NSP1 and NSP2 can be functionally replaced by non-legume orthologs; including rice (Oryza sativa) OsNSP1 and OsNSP2. This shows that both proteins are functionally conserved in higher plants, suggesting an ancient function that was conserved during evolution. Here we show that NSP1 and NSP2 are indispensable for strigolactone biosynthesis in the legume Medicago truncatula as well as rice. Mutant nsp1-nsp2 plants hardly produce strigolactones. The lack of strigolactone biosynthesis coincides with strongly reduced DWARF27 expression in both species. Rice and Medicago represent distinct phylogenetic lineages that split ~150 million years ago. Therefore we conclude that regulation of strigolactone biosynthesis by NSP1 and NSP2 is an ancestral function conserved in higher plants. Since strigolactone biosynthesis is highly regulated by environmental conditions like phosphate starvation, NSP1 and NSP2 will be important tools in future studies on the molecular mechanisms by which environmental sensing is translated into regulation of strigolactone biosynthesis. As NSP1 and NSP2 are single copy genes in legumes, it implies that a single protein complex fulfills a dual regulatory function of different downstream targets; symbiotic and non-symbiotic, respectively.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.