Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 531112
Title Vanillyl alcohol oxidases produced in Komagataella phaffii contain a highly stable non-covalently bound anionic FAD semiquinone
Author(s) Gygli, G.A.; Berkel, W.J.H. van
Source Biocatalysis 3 (2017)1. - ISSN 0886-4454 - p. 17 - 26.
DOI https://doi.org/10.1515/boca-2017-0002
Department(s) Biochemistry
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2017
Abstract Vanillyl alcohol oxidase (VAO) from Penicillium simplicissimum is a covalent flavoprotein that has emerged as a promising biocatalyst for the production of aromatic fine chemicals such as vanillin, coniferyl alcohol and enantiopure 1-(4’-hydroxyphenyl) alcohols. The largescale production of this eukaryotic enzyme in Escherichia coli has remained challenging thus far. For that reason an alternative, eukaryotic expression system, Komagataella phaffii, was tested. Additionally, to produce novel VAO biocatalysts, we screened genomes for VAO homologues. One bacterial and five fungal sequences were selected for expression, using key active site residues as criteria for their selection. Expression of the putative vao genes in K. phaffii was successful, however expression levels were low (1 mg per litre of culture). Surprisingly, all purified enzymes were found to contain a highly stable, non-covalently bound anionic FAD semiquinone that could not be reduced by dithionite or cyanoborohydride. Activity experiments revealed that VAO expressed in K. phaffii does not produce vanillin because the enzyme suffers from oxidative stress.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.