Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 531310
Title Supplementary dietary calcium stimulates faecal fat and bile acid excretion, but does not protect against obesity and insulin resistance in C57BL/6J mice
Author(s) Wit, Nicole de; Oosterink, Els; Bosch-Vermeulen, Hanneke; Muller, Michael; Meer, Roelof van der
Department(s) Chair Nutrition Metabolism and Genomics
Human Nutrition (HNE)
VLAG
WIAS
Publication type Dataset
Publication year 2011
Keyword(s) Mus musculus - GSE18581 - PRJNA120291
Abstract There is increased interest in the potential protective role of dietary Ca in the development of metabolic disorders related to the metabolic syndrome. Ca-induced intestinal precipitation of fatty acids and bile acids as well as systemic metabolic effects of Ca on adipose tissue is proposed to play a causal role. In this experiment, we have studied all these aspects to validate the suggested protective effect of Ca supplementation, independent of other dietary changes, on the development of diet-induced obesity and insulin resistance. In our diet intervention study, C57BL/6J mice were fed high-fat diets differing in Ca concentrations (50 v. 150 mmol/kg). Faecal excretion analyses showed an elevated precipitation of intestinal fatty acids (2·3-fold; P < 0·01) and bile acids (2-fold; P < 0·01) on the high-Ca diet. However, this only led to a slight reduction in fat absorption (from 98 to 95 %; P < 0·01), mainly in the distal small intestine as indicated by gene expression changes. We found no effect on body-weight gain. Lipolysis and lipogenesis-related parameters in adipose tissue also showed no significant changes on the high-Ca diet, indicating no systemic effects of dietary Ca on adiposity. Furthermore, early gene expression changes of intestinal signaling molecules predicted no protective effect of dietary Ca on the development of insulin resistance, which was confirmed by equal values for insulin sensitivity on both diets. Taken together, our data do not support the proposed protective effect of dietary Ca on the development of obesity and/or insulin resistance, despite a significant increase in fecal excretion of fatty acids and bile acids.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.