Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 531335
Title Synthetic bootstrapping of convolutional neural networks for semantic plant part segmentation
Author(s) Barth, R.; IJsselmuiden, J.; Hemming, J.; Henten, E.J. Van
Source Computers and Electronics in Agriculture (2017). - ISSN 0168-1699
Department(s) WUR GTB Tuinbouw Technologie
Farm Technology Group
WUR GTB Teelt & Gewasfysiologie
Publication type Refereed Article in a scientific journal
Publication year 2017
Keyword(s) Big data - Bootstrapping - Computer vision - Semantic segmentation - Synthetic dataset
Abstract A current bottleneck of state-of-the-art machine learning methods for image segmentation in agriculture, e.g. convolutional neural networks (CNNs), is the requirement of large manually annotated datasets on a per-pixel level. In this paper, we investigated how related synthetic images can be used to bootstrap CNNs for successful learning as compared to other learning strategies. We hypothesise that a small manually annotated empirical dataset is sufficient for fine-tuning a synthetically bootstrapped CNN. Furthermore we investigated (i) multiple deep learning architectures, (ii) the correlation between synthetic and empirical dataset size on part segmentation performance, (iii) the effect of post-processing using conditional random fields (CRF) and (iv) the generalisation performance on other related datasets. For this we have performed 7 experiments using the Capsicum annuum (bell or sweet pepper) dataset containing 50 empirical and 10,500 synthetic images with 7 pixel-level annotated part classes. Results confirmed our hypothesis that only 30 empirical images were required to obtain the highest performance on all 7 classes (mean IOU = 0.40) when a CNN was bootstrapped on related synthetic data. Furthermore we found optimal empirical performance when a VGG-16 network was modified to include à trous spatial pyramid pooling. Adding CRF only improved performance on the synthetic data. Training binary classifiers did not improve results. We have found a positive correlation between dataset size and performance. For the synthetic dataset, learning stabilises around 3000 images. Generalisation to other related datasets proved possible.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.