Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 531348
Title Thermally Responsive Capillary Suspensions
Author(s) Das, Anupam A.K.; Dunstan, Timothy S.; Stoyanov, Simeon D.; Starck, Pierre; Paunov, Vesselin N.
Source ACS Applied Materials and Interfaces 9 (2017)50. - ISSN 1944-8244 - p. 44152 - 44160.
DOI https://doi.org/10.1021/acsami.7b11358
Department(s) Physical Chemistry and Soft Matter
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2017
Keyword(s) agarose - calcium carbonate - capillary structuring - capillary suspension - methyl cellulose - thermally responsive hydrogels
Abstract We demonstrate that stimulus-responsive capillary-structured materials can be formed from hydrophobized calcium carbonate particles suspended in a non-polar phase (silicone oil) and bridged by very small amounts of a hydrogel as the secondary aqueous phase. Inclusion of thermally responsive polymers into the aqueous phase yielded a capillary-structured suspension whose rheology is controlled by a change in temperature and can increase its complex modulus by several orders of magnitude because of the gelation of the capillary bridges between the solid particles. We demonstrate that the rheology of the capillary suspension and its response upon temperature changes can be controlled by the gelling properties as little as 0.1 w/w % of the secondary aqueous phase containing 2 wt % of the gelling carbohydrate. Doping the secondary (aqueous) phase with methyl cellulose, which gels at elevated temperatures, gave capillary-structured materials whose viscosity and structural strength can increase by several orders of magnitude as the temperature is increased past the gelling temperature of the methyl cellulose solution. Increasing the methyl cellulose concentration from 0 to 2 w/w % in the secondary (aqueous) phase increases the complex modulus and the yield stress of the capillary suspension of 10 w/w % hydrophobized calcium carbonate in silicone oil by 2 orders of magnitude at a fixed temperature. By using an aqueous solution of a low melting point agarose as a secondary liquid phase, which melts as the temperature is raised, we produced capillary-structured materials whose viscosity and structural strength can decrease by several orders of magnitude as the temperature is increased past the melting temperature of the agarose solution. The development of thermally responsive capillary suspensions can find potential applications in structuring of smart home and personal care products as well as in temperature-triggered change in rheology and release of flavors in foods and actives in pharmaceutical formulations.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.