Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 531361
Title Mercury associated neurochemical response in Arctic barnacle goslings (Branta leucopsis)
Author(s) Brink, Nico W. van den; Scheiber, Isabella B.R.; Jong, Margje E. de; Braun, Anna; Arini, Adeline; Basu, Niladri; Berg, Hans van den; Komdeur, Jan; Loonen, Maarten J.J.E.
Source Science of the Total Environment 624 (2018). - ISSN 0048-9697 - p. 1052 - 1058.
DOI http://dx.doi.org/10.1016/j.scitotenv.2017.12.191
Department(s) VLAG
WIMEK
Sub-department of Toxicology
Publication type Refereed Article in a scientific journal
Publication year 2018
Keyword(s) Exposure and effect - Neurotoxicity - Polar - Terrestrial - Tundra
Abstract There remains great concern over mercury pollution in the Arctic, though relatively little is known about impacts on biota that inhabit Arctic terrestrial systems. To help address this, the current study was performed with barnacle goslings (Branta leucopsis) from a coal mine-impacted site and a control site near Ny-Ålesund, Spitsbergen (Svalbard). The works focused mainly on mercury, as coal contains trace levels of this element. Total mercury concentrations were quantified in soil and vegetation from the two sites, as well as feces and liver from the goslings. Next, the mercury exposures were related to dopamine 2 (D2)- and NMDA-receptors in the brain, given that mercury is a proven neurotoxicant. Soil and vegetation in the mining area contained mercury levels that were approximately 3- and 2.2-times higher than in the control site. Despite a significant difference between the sites, the soil and vegetation mercury levels where were within ranges found at other Arctic locations. Goslings grazing in the mine-impacted area contained significantly higher hepatic mercury levels than those sampled from the control site. Compared to other species, the hepatic concentrations were relatively low possibly due to dilution of the mercury in growing goslings (growth dilution) and deposition of mercury in the growing feathers. Hepatic mercury concentrations were positively related to D2-neuroreceptor levels but not to NMDA-receptor levels thus suggesting a possible subtle neurological effect. To our knowledge, this is among the first studies on mercury exposure in Arctic terrestrial organisms, and one of the first to document potential subtle neurological responses associated with exposure to low, environmentally relevant mercury levels, which also can be found at other locations in the Arctic. However, as a pilot effort, the results here need to be examined in additional studies that include, for example, lager study designs, different geographic sites and other terrestrial species.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.