Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 531433
Title The physiology of Agaricus bisporus in semi-commercial compost cultivation appears to be highly conserved among unrelated isolates
Author(s) Pontes, María Victoria Aguilar; Patyshakuliyeva, Aleksandrina; Post, Harm; Jurak, Edita; Hildén, Kristiina; Altelaar, Maarten; Heck, Albert; Kabel, Mirjam A.; Vries, Ronald P. de; Mäkelä, Miia R.
Source Fungal Genetics and Biology 112 (2018). - ISSN 1087-1845 - p. 12 - 20.
DOI http://dx.doi.org/10.1016/j.fgb.2017.12.004
Department(s) Bioprocess Engineering
Food Chemistry Group
Publication type Refereed Article in a scientific journal
Publication year 2018
Keyword(s) Agaricus bisporus - Carbohydrate active enzymes - Carbon metabolism - Commercial cultivation - Proteomics - Transcriptomics
Abstract The white button mushroom Agaricus bisporus is one of the most widely produced edible fungus with a great economical value. Its commercial cultivation process is often performed on wheat straw and animal manure based compost that mainly contains lignocellulosic material as a source of carbon and nutrients for the mushroom production. As a large portion of compost carbohydrates are left unused in the current mushroom cultivation process, the aim of this work was to study wild-type A. bisporus strains for their potential to convert the components that are poorly utilized by the commercial strain A15. We therefore focused our analysis on the stages where the fungus is producing fruiting bodies. Growth profiling was used to identify A. bisporus strains with different abilities to use plant biomass derived polysaccharides, as well as to transport and metabolize the corresponding monomeric sugars. Six wild-type isolates with diverse growth profiles were compared for mushroom production to A15 strain in semi-commercial cultivation conditions. Transcriptome and proteome analyses of the three most interesting wild-type strains and A15 indicated that the unrelated A. bisporus strains degrade and convert plant biomass polymers in a highly similar manner. This was also supported by the chemical content of the compost during the mushroom production process. Our study therefore reveals a highly conserved physiology for unrelated strains of this species during growth in compost.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.