Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 532078
Title Using machine learning to predict soil bulk density on the basis of visual parameters : Tools for in-field and post-field evaluation
Author(s) Bondi, Giulia; Creamer, Rachel; Ferrari, Alessio; Fenton, Owen; Wall, David
Source Geoderma 318 (2018). - ISSN 0016-7061 - p. 137 - 147.
DOI http://dx.doi.org/10.1016/j.geoderma.2017.11.035
Department(s) Chair Soil Biology and Biological Soil Quality
PE&RC
Publication type Refereed Article in a scientific journal
Publication year 2018
Keyword(s) Machine learning - Soil bulk density - Soil quality - Soil structure
Abstract Soil structure is a key factor that supports all soil functions. Extracting intact soil cores and horizon specific samples for determination of soil physical parameters (e.g. bulk density (Bd) or particle size distribution) is a common practice for assessing indicators of soil structure. However, these are often difficult to measure, since they require expensive and time consuming laboratory analyses. Our aim was to provide tools, through the use of machine learning techniques, to estimate the value of Bd based solely on soil visual assessment, observed by operators directly in the field. The first tool was a decision tree model, derived through a decision tree learning algorithm, which allows discrimination among three Bd ranges. The second tool was a linear equation model, derived through a linear regression algorithm, which predicts the numerical value of soil Bd. These tools were validated on a dataset of 471 soil horizons, belonging to 201 soil profile pits surveyed in Ireland. Overall, the decision tree model showed an accuracy of ~ 60%, while the linear equation model has a correlation coefficient of about 0.65 compared to the measured Bd values. For both models, the most relevant property affecting soil structural quality appears to be the humic characteristics of the soil, followed by soil porosity and pedogenic formation. The two tools are parsimonious and can be used by soil surveyors and analysts who need to have an approximate in-situ estimate of the structural quality for various soil functional applications.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.