Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 532612
Title Capillary Structured Suspensions from in Situ Hydrophobized Calcium Carbonate Particles Suspended in a Polar Liquid Media
Author(s) Dunstan, Timothy S.; Das, Anupam A.K.; Starck, Pierre; Stoyanov, Simeon D.; Paunov, Vesselin N.
Source Langmuir 34 (2018)1. - ISSN 0743-7463 - p. 442 - 452.
Department(s) Physical Chemistry and Soft Matter
Publication type Refereed Article in a scientific journal
Publication year 2018
Abstract We demonstrate that capillary suspensions can be formed from hydrophilic calcium carbonate particles suspended in a polar continuous media and connected by capillary bridges formed of minute amounts of an immiscible secondary liquid phase. This was achieved in two different polar continuous phases, water and glycerol, and three different oils, oleic acid, isopropyl myristate, and peppermint oil as a secondary liquid phase. The capillary structuring of the suspension was made possible through local in situ hydrophobization of the calcium carbonate particles dispersed in the polar media by adding very small amounts of oleic acid to the secondary liquid phase. We observed a strong increase in the viscosity of the calcium carbonate suspension by several orders of magnitude upon addition of the secondary oil phase compared with the same suspension without secondary liquid phase or without oleic acid. The stability and the rheological properties of the obtained capillary structured materials were studied in relation to the physical properties of the system such as the particle size, interfacial tension between the primary and secondary liquid phases, as well as the particle contact angle at this liquid-liquid interface. We also determined the minimal concentrations of the secondary liquid phase at fixed particle concentration as well as the minimal particle concentration at fixed secondary phase concentration needed to form a capillary suspension. Capillary suspensions formed by this method can find application in structuring pharmaceutical and food formulations as well as a variety of home and personal care products.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.