Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 533101
Title Functional impact of the n-terminal arm of proline dehydrogenase from thermus thermophilus
Author(s) Huijbers, Mieke M.E.; Alen, Ilona van; Wu, Jenny W.; Barendregt, Arjan; Heck, Albert J.R.; Berkel, Willem J.H. Van
Source Molecules 23 (2018)1. - ISSN 1420-3049
Department(s) Biochemistry
Publication type Refereed Article in a scientific journal
Publication year 2018
Keyword(s) Flavoprotein - Proline dehydrogenase - Protein engineering - Protein oligomerization - Solubility tag - Suicide inhibition - TIM-barrel
Abstract Proline dehydrogenase (ProDH) is a ubiquitous flavoenzyme that catalyzes the oxidation of proline to ∆1-pyrroline-5-carboxylate. Thermus thermophilus ProDH (TtProDH) contains in addition to its flavin-binding domain an N-terminal arm, consisting of helices αA, αB, and αC. Here, we report the biochemical properties of the helical arm truncated TtProDH variants ∆A, ∆AB, and ∆ABC, produced with maltose-binding protein as solubility tag. All three truncated variants show similar spectral properties as TtProDH, indicative of a conserved flavin-binding pocket. ∆A and ∆AB are highly active tetramers that rapidly react with the suicide inhibitor N-propargylglycine. Removal of the entire N-terminal arm (∆ABC) results in barely active dimers that are incapable of forming a flavin adduct with N-propargylglycine. Characterization of V32D, Y35F, and V36D variants of ∆AB established that a hydrophobic patch between helix αC and helix α8 is critical for TtProDH catalysis and tetramer stabilization.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.