Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 533895
Title Tailoring ion exchange membranes to enable low osmotic water transport and energy efficient electrodialysis
Author(s) Porada, S.; Egmond, W.J. van; Post, J.W.; Saakes, M.; Hamelers, H.V.M.
Source Journal of Membrane Science 552 (2018). - ISSN 0376-7388 - p. 22 - 30.
DOI https://doi.org/10.1016/j.memsci.2018.01.050
Department(s) Sub-department of Environmental Technology
Publication type Refereed Article in a scientific journal
Publication year 2018
Keyword(s) Electrical resistance - Electrodialysis - Ion exchange membrane - Osmosis - Water desalination
Abstract Ion exchange membranes have been applied for water desalination since the 1950s in a process called electrodialysis, ED. Parallel to the transport of ions across ion exchange membranes, water molecules are transported from diluate to concentrate compartments reducing ED efficiency. In this study tailor made meshed membranes were prepared by embedding polymeric meshes with significantly reduced open area into an ion conductive polymer. These membranes were characterized to assess their transport properties. It is shown that by changing mesh open area, material and surface properties, it is possible to significantly reduce osmotic water transport. Polyamide mesh embedded in a cation exchange polymer showed an eightfold decrease of the water mass transport coefficient. Unexpectedly, osmotic water transport was not affected when the same mesh material was embedded in an anion exchange polymer. A decrease of the osmotic water transport for meshed anion exchange membranes was achieved by using a polyethylene terephthalate mesh. Despite the associated electrical resistance increase, application of meshed membranes increased diluate yield and allowed for more energy efficient operation in case ED is confined to a low current density regime.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.