Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 533928
Title Plant community evenness responds to spatial plant–soil feedback heterogeneity primarily through the diversity of soil conditioning
Author(s) Wubs, E.R.J.; Bezemer, T.M.
Source Functional Ecology 32 (2018)2. - ISSN 0269-8463 - p. 509 - 521.
DOI https://doi.org/10.1111/1365-2435.13017
Department(s) PE&RC
Laboratory of Nematology
Publication type Refereed Article in a scientific journal
Publication year 2018
Keyword(s) competition - plant diversity - plant–soil interactions - spatial heterogeneity
Abstract Functional Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society. Plant–soil feedback (PSF) has been identified as a key driver of local plant diversity and evenness in competitive communities. However, while it has been shown that spatial PSF heterogeneity can alter plant performance and competitive interactions, there is no proof of principle that spatial PSF heterogeneity enhances community diversity. Using a grassland model system, we separated two aspects of spatial heterogeneity: the number of species conditioning the soil and spatial distribution of the PSFs. Our data show that PSFs promoted a higher plant evenness when the soil was conditioned by multiple species (mixed-conditioned) than when the soil was conditioned by a single species (mono-conditioned). On mono-conditioned soils, heterospecifics typically outperformed the focal species. In addition, there was a trend for increasing community evenness from uniform, via fine-grained to coarse-grained mixed-conditioned soils, but this was not significant. On mixed-conditioned soils, performance of all competing species was intermediate to the best and the worst mono-conditioned soils, leading to higher community evenness. Our data demonstrate that PSFs play a role in promoting plant evenness. Across mono-conditioned soils, PSF led to altered competitive hierarchies. However, on soils conditioned by multiple species, competitive ability among species was more similar and this led to higher plant evenness. The spatial distribution of the heterogeneity, on the other hand, did not significantly affect plant evenness. Our data therefore show that community evenness was more strongly related to the number of plant species that conditioned the soil than the spatial distribution of the PSF heterogeneity. Future studies need to investigate the importance of PSFs in the field across plant life stages and multiple generations. A plain language summary is available for this article.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.