Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 533938
Title Incorporating circulation statistics in bias correction of GCM ensembles: hydrological application for the Rhine basin
Author(s) Photiadou, C.; Hurk, B. van den; Delden, A. van; Weerts, A.H.
Source Climate Dynamics 46 (2016)1-2. - ISSN 0930-7575 - p. 187 - 203.
DOI http://dx.doi.org/10.1007/s00382-015-2578-1
Department(s) Hydrology and Quantitative Water Management
WIMEK
Publication type Refereed Article in a scientific journal
Publication year 2016
Abstract An adapted statistical bias correction method is introduced to incorporate circulation-dependence of the model precipitation bias, and its influence on estimated discharges for the Rhine basin is analyzed for a historical period. The bias correction method is tailored to time scales relevant to flooding events in the basin. Large-scale circulation patterns (CPs) are obtained through Maximum Covariance Analysis using reanalysis sea level pressure and high-resolution precipitation observations. A bias correction using these CPs is applied to winter and summer separately, acknowledging the seasonal variability of the circulation regimes in North Europe and their correlation with regional precipitation rates over the Rhine basin. Two different climate model ensemble outputs are explored: ESSENCE and CMIP5. The results of the CP-method are then compared to observations and uncorrected model outputs. Results from a simple bias correction based on a delta factor (NoCP-method) are also used for comparison. For both summer and winter, the CP-method offers a statistically significant improvement of precipitation statistics for subsets of data dominated by particular circulation regimes, demonstrating the circulation-dependence of the precipitation bias. Uncorrected, CP and NoCP corrected model outputs were used as forcing to a hydrological model to simulate river discharges. The CP-method leads to a larger improvement in simulated discharge in the Alpine area in winter than in summer due to a stronger dependence of Rhine precipitation on atmospheric circulation in winter. However, the NoCP-method, in comparison to the CP-method, improves the discharge estimations over the entire Rhine basin.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.