Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 533964
Title Light from Within: Sensing Weak Strains and FemtoNewton Forces in Single Molecules
Author(s) Laar, Ties van de; Schuurman, Hent; Scheer, Pieter van der; Maarten van Doorn, Jan; Gucht, Jasper van der; Sprakel, Joris
Department(s) Physical Chemistry and Soft Matter
Publication type Refereed Article in a scientific journal
Publication year 2018
Keyword(s) conjugated polymers - mechanochromism - molecular force sensors - single-molecule spectroscopy
Abstract Weak mechanical forces acting on molecules are in control of a wide variety of (bio)chemical and physical processes. The spatially inhomogeneous nature of these forces has a profound effect on the structure and mechanics of soft and biological materials. Yet, the lack of methods for probing sub-picoNewton forces at high resolution leaves our understanding of these effects incomplete. Here, we solve this challenge by engineering semiconducting polymers to act as ultraweak force sensors. Combining simulations, chemical synthesis, and single-molecule fluorescence spectroscopy, we demonstrate force sensing in single molecules. We achieve grayscale force detection, at a resolution as low as 300 fN, down to the molecular scale. Our approach opens the way to illuminating and quantifying molecular mechanics with unprecedented resolution. Mechanical stress at the molecular scale plays a crucial role in a wide variety of (bio)chemical processes, ranging from the sensing of the mechanical environment by cells to the failure of high-tech engineering materials. Although we know these molecular forces exist, making them visible and quantifying them at the molecular scale have remained impossible to date. This lack of direct insight at the molecular level has precluded a deeper understanding of how mechanics govern these problems. Here, we demonstrate quantitative force sensing in individual molecules at an unprecedented force resolution. Our approach is completely non-invasive and thus opens the way to visualizing and quantifying mechanical stresses in molecular materials and complex biological scenarios. Weak forces acting on molecules govern a vast range of physical, chemical, and biological phenomena. To date, it has not been possible to measure these forces directly because force-sensing methods at the nanoscale have lacked the resolution to resolve ultraweak forces at the scale of single molecules deep within complex materials. Here, we solve this challenge by demonstrating single-molecule force sensing with engineered light-emitting molecules and reporting forces as small as one trillionth of a Newton.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.