Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 533987
Title Closed-loop spray drying solutions for energy efficient powder production
Author(s) Moejes, S.N.; Visser, Q.; Bitter, J.H.; Boxtel, A.J.B. van
Source Innovative Food Science and Emerging Technologies 47 (2018). - ISSN 1466-8564 - p. 24 - 37.
DOI http://dx.doi.org/10.1016/j.ifset.2018.01.005
Department(s) Biobased Chemistry and Technology
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2018
Keyword(s) Air dehumidification - Membrane contactor - Milk powder - Pinch analysis - Spray drying - Zeolite
Abstract This paper introduces a closed-loop dryer system to reduce the energy consumption for milk powder production. The system is based on a monodisperse droplet atomizer which reduces the amount of fines in the exhaust air, and allows dehumidification and recirculation of the air over the dryer. In this way the latent and sensible heat from the dryer exhaust are recovered. Two adsorbent systems for dehumidification are discussed; a membrane contactor with a liquid desiccant, and a zeolite sorption wheel. Four configurations for closed-loop spray drying are simulated and optimized. By heat integration of the adsorber-regenerator system with the dryer and preceding concentration step, the energy consumption is significantly reduced to 4.9 MJ heat per kg milk powder. The final heat integration solutions were obtained by simultaneous optimization of the operational conditions and the heat exchanger network based on pinch analysis. Industrial relevance: Drying is an energy intensive operation in processing. To comply with the upcoming regulations that arise from the EU goals for sustainable development, the energy consumption of drying processes should be reduced drastically. Emerging technologies are the key for the next step in energy efficiency improvement. A closed-loop spray drying system for milk powder production is simulated and optimized in this work. The proposed technologies are: monodisperse droplet drying, membrane contactor and a zeolite wheel. By applying air dehumidification and heat integration the latent and sensible heat are recovered from the exhaust air. The energy consumption for milk concentration and spray drying has the potential to be lowered from 8.4 to 4.9 MJ heat per kg milk powder. Although milk powder has been considered, the proposed system is also applicable to other food products, as well as in the (bio)chemical, pharmaceutical and paper industry.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.