Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 534094
Title Quantitative physiology and aroma formation of a dairy Lactococcus lactis at near-zero growth rates
Author(s) Mastrigt, Oscar van; Abee, Tjakko; Lillevang, Søren K.; Smid, Eddy J.
Source Food Microbiology 73 (2018). - ISSN 0740-0020 - p. 216 - 226.
DOI http://dx.doi.org/10.1016/j.fm.2018.01.027
Department(s) Food Microbiology Laboratory
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2018
Keyword(s) Cheese - Hydrophobicity - Maintenance - Viable but non-culturable - Volatile organic compounds
Abstract During food fermentation processes like cheese ripening, lactic acid bacteria (LAB) encounter long periods of nutrient limitation leading to slow growth. Particular LAB survive these periods while still contributing to flavour formation in the fermented product. In this study the dairy Lactococcus lactis biovar diacetylactis FM03-V1 is grown in retentostat cultures to study its physiology and aroma formation capacity at near-zero growth rates. During the cultivations, the growth rate decreased from 0.025 h−1 to less than 0.001 h−1 in 37 days, while the viability remained above 80%. The maintenance coefficient of this dairy strain decreased by a factor 7 at near-zero growth rates compared to high growth rates (from 2.43 ± 0.35 to 0.36 ± 0.03 mmol ATP.gDW−1.h−1). In the retentostat cultures, 62 different volatile organic compounds were identified by HS SPME GC-MS. Changes in aroma profile resembled some of the biochemical changes occurring during cheese ripening and reflected amino acid catabolism, metabolism of fatty acids and conversion of acetoin into 2-butanone. Analysis of complete and cell-free samples of the retentostat cultures showed that particular lipophilic compounds, mainly long-chain alcohols, aldehydes and esters, accumulated in the cells, most likely in the cell membranes. In conclusion, retentostat cultivation offers a unique tool to study aroma formation by lactic acid bacteria under industrially relevant growth conditions.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.