Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 534119
Title Modification of chrysanthemum odour and taste with chrysanthemol synthase induces strong dual resistance against cotton aphids
Author(s) Li, Jinjin; Delatte, Thierry; Vervoort, Jacques; Gao, Liping; Verstappen, Francel; Xiong, Wei; Gan, Jianping; Jongsma, Maarten A.; Wang, Caiyun
Source Plant Biotechnology Journal 16 (2018)8. - ISSN 1467-7644 - p. 1434 - 1445.
DOI http://dx.doi.org/10.1111/pbi.12885
Department(s) Laboratory of Plant Physiology
EPS
Biochemistry
VLAG
Biosystematics
PRI BIOS Applied Metabolic Systems
Publication type Refereed Article in a scientific journal
Publication year 2018
Keyword(s) Aphid resistance - Chrysanthemol synthase - Chrysanthemum - Double bioactivity - Glycoside - Terpene volatile
Abstract Aphids are pests of chrysanthemum that employ plant volatiles to select host plants and ingest cell contents to probe host quality before engaging in prolonged feeding and reproduction. Changes in volatile and nonvolatile metabolite profiles can disrupt aphid-plant interactions and provide new methods of pest control. Chrysanthemol synthase (CHS) from Tanacetum cinerariifolium represents the first committed step in the biosynthesis of pyrethrin ester insecticides, but no biological role for the chrysanthemol product alone has yet been documented. In this study, the TcCHS gene was over-expressed in Chrysanthemum morifolium and resulted in both the emission of volatile chrysanthemol (ca. 47 pmol/h/gFW) and accumulation of a chrysanthemol glycoside derivative, identified by NMR as chrysanthemyl-6-O-malonyl-β-D-glucopyranoside (ca. 1.1 mM), with no detrimental phenotypic effects. Dual-choice assays separately assaying these compounds in pure form and as part of the headspace and extract demonstrated independent bioactivity of both components against the cotton aphid (Aphis gossypii). Performance assays showed that the TcCHS plants significantly reduced aphid reproduction, consistent with disturbance of aphid probing activities on these plants as revealed by electropenetrogram (EPG) studies. In open-field trials, aphid population development was very strongly impaired demonstrating the robustness and high impact of the trait. The results suggest that expression of the TcCHS gene induces a dual defence system, with both repellence by chrysanthemol odour and deterrence by its nonvolatile glycoside, introducing a promising new option for engineering aphid control into plants.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.