Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 534185
Title Bacterially driven cadmium sulfide precipitation on porous membranes : Toward platforms for photocatalytic applications
Author(s) Marusak, Katherine E.; Krug, Julia R.; Feng, Yaying; Cao, Yangxiaolu; You, Lingchong; Zauscher, Stefan
Source Biointerphases 13 (2018)1. - ISSN 1934-8630
Department(s) BioNanoTechnology
Publication type Refereed Article in a scientific journal
Publication year 2018
Abstract The emerging field of biofabrication capitalizes on nature's ability to create materials with a wide range of well-defined physical and electronic properties. Particularly, there is a current push to utilize programmed, self-organization of living cells for material fabrication. However, much research is still necessary at the interface of synthetic biology and materials engineering to make biofabrication a viable technique to develop functional devices. Here, the authors exploit the ability of Escherichia coli to contribute to material fabrication by designing and optimizing growth platforms to direct inorganic nanoparticle (NP) synthesis, specifically cadmium sulfide (CdS) NPs, onto porous polycarbonate membranes. Additionally, current, nonbiological, chemical synthesis methods for CdS NPs are typically energy intensive and use high concentrations of hazardous cadmium precursors. Using biosynthesis methods through microorganisms could potentially alleviate these issues by precipitating NPs with less energy and lower concentrations of toxic precursors. The authors adopted extracellular precipitation strategies to form CdS NPs on the membranes as bacterial/membrane composites and characterized them by spectroscopic and imaging methods, including energy dispersive spectroscopy, and scanning and transmission electron microscopy. This method allowed us to control the localization of NP precipitation throughout the layered bacterial/membrane composite, by varying the timing of the cadmium precursor addition. Additionally, the authors demonstrated the photodegradation of methyl orange using the CdS functionalized porous membranes, thus confirming the photocatalytic properties of these composites for eventual translation to device development. If combined with the genetically programmed self-organization of cells, this approach promises to directly pattern CdS nanostructures on solid supports.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.