Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 534390
Title R0: Host Longevity Matters
Author(s) Viljoen, L.M.; Hemerik, L.; Molenaar, J.
Source Acta Biotheoretica 66 (2018)1. - ISSN 0001-5342 - p. 1 - 16.
DOI https://doi.org/10.1007/s10441-018-9315-1
Department(s) Biometris (WU MAT)
PE&RC
Publication type Refereed Article in a scientific journal
Publication year 2018
Keyword(s) Duration of infection - Epidemiology - Fitness strategy - Host longevity - milker–killer dilemma - R
Abstract The basic reproduction ratio, R0, is a fundamental concept in epidemiology. It is defined as the total number of secondary infections brought on by a single primary infection, in a totally susceptible population. The value of R0 indicates whether a starting epidemic reaches a considerable part of the population and causes a lot of damage, or whether it remains restricted to a relatively small number of individuals. To calculate R0 one has to evaluate an integral that ranges over the duration of the infection of the host. This duration is, of course, limited by remaining host longevity. So, R0 depends on remaining host longevity and in this paper we show that for long-lived hosts this aspect may not be ignored for long-lasting infections. We investigate in particular how this epidemiological measure of pathogen fitness depends on host longevity. For our analyses we adopt and combine a generic within- and between-host model from the literature. To find the optimal strategy for a pathogen from an evolutionary point of view, we focus on the indicator (Formula presented.), i.e., the optimum of R0 as a function of its replication and mutation rates. These are the within-host parameters that the pathogen has at its disposal to optimize its strategy. We show that (Formula presented.) is highly influenced by remaining host longevity in combination with the contact rate between hosts in a susceptible population. In addition, these two parameters determine whether a killer-like or a milker-like strategy is optimal for a given pathogen. In the killer-like strategy the pathogen has a high rate of reproduction within the host in a short time span causing a relatively short disease, whereas in the milker-like strategy the pathogen multiplies relatively slowly, producing a continuous small amount of offspring over time with a small effect on host health. The present research allows for the determination of a bifurcation line in the plane of host longevity versus contact rate that forms the boundary between the milker-like and killer-like regions. This plot shows that for short remaining host longevities the killer-like strategy is optimal, whereas for very long remaining host longevities the milker-like strategy is advantageous. For in-between values of host longevity, the contact rate determines which of both strategies is optimal.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.