Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 534562
Title Intercropping with wheat lowers nutrient uptake and biomass accumulation of maize, but increases photosynthetic rate of the ear leaf
Author(s) Gou, Fang; Ittersum, Martin K. Van; Couëdel, Antoine; Zhang, Yue; Wang, Yajun; Putten, Peter E.L. Van Der; Zhang, Lizhen; Werf, Wopke Van Der
Source AoB Plants 10 (2018)1. - ISSN 2041-2851
DOI http://dx.doi.org/10.1093/aobpla/ply010
Department(s) Centre for Crop Systems Analysis
PE&RC
Plant Production Systems
Crop Physiology
Crop and Weed Ecology
Publication type Refereed Article in a scientific journal
Publication year 2018
Abstract Intercropping is an ancient agricultural practice that provides a possible pathway for sustainable increases in crop yields. Here, we determine how competition with wheat affects nutrient uptake (nitrogen and phosphorus) and leaf traits, such as photosynthetic rate, in maize. In a field experiment, maize was planted as a sole crop, in three different intercrop configurations with wheat (a replacement intercrop and two add-row intercrops), and as a skip-row system with one out of each three maize rows omitted. Nitrogen and phosphorus uptake were determined at flowering and maturity. Specific leaf area, leaf nitrogen concentration, chlorophyll content and photosynthetic rate of the ear leaf were determined at flowering. Nitrogen and phosphorus concentrations were significantly lower in intercropped maize than in sole maize and skip-row maize at flowering, but these differences were smaller at maturity. At flowering, specific leaf area was significantly greater in intercrops than in skip-row maize. Leaf nitrogen concentration was significantly lower in add-row intercrops than in sole maize, skip-row maize or maize in the replacement intercrop. Leaf chlorophyll content was highest in sole and skip-row maize, intermediate in maize in the replacement intercrop and lowest in maize grown in add-row intercrops. On the contrary, photosynthetic rate was significantly higher in the replacement intercrop than in sole maize, skip-row maize and the intercrop with an additional maize row. The findings indicate that competition with intercropped wheat severely constrained nutrient uptake in maize, while photosynthetic rate of the ear leaf was not negatively affected. Possible mechanisms for higher photosynthesis rate at lower leaf nitrogen content in intercropped maize are discussed.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.