Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 535450
Title Techno-economic evaluation of microalgae harvesting and dewatering systems
Author(s) Fasaei, F.; Bitter, J.H.; Slegers, P.M.; Boxtel, A.J.B. van
Source Algal Research 31 (2018). - ISSN 2211-9264 - p. 347 - 362.
Department(s) Biobased Chemistry and Technology
Operations Research and Logistics
Publication type Refereed Article in a scientific journal
Publication year 2018
Keyword(s) Cost - Dewatering - Energy - Harvesting - Microalgae - System analysis
Abstract Microalgal biomass is processed into products by two main process steps: 1) harvesting and dewatering; and 2) extraction, fractionation and conversion. The performance of unit operations for harvesting and dewatering is often expressed in qualitative terms, like “high energy consumption” and “low in operational cost”. Moreover, equipment is analysed as stand-alone unit operations, which do not interact in a chain of operations. This work concerns a quantitative techno-economic analysis of different large-scale harvesting and dewatering systems with focus on processing cost, energy consumption and resource recovery. Harvesting and dewatering are considered both as a single operation and as combinations of sequential operations. The economic evaluation shows that operational costs and energy consumption are in the range 0.5–2 €·kg− 1 algae and 0.2–5 kWh·kg− 1 of algae, respectively, for dilute solutions from open cultivation systems. Harvesting and dewatering of the dilute systems with flocculation results in the lowest energy requirement. However, due to required chemicals and loss of flocculants, these systems end at the same cost level as mechanical harvesting systems. For closed cultivation systems the operational costs decrease to 0.1–0.6 €·kg− 1 algae and the energy consumption to 0.1–0.7 kWh·kg− 1 algae. For all harvesting and dewatering systems, labour has a significant contribution to the total costs. The total costs can be reduced by a high level of automation, despite the higher associated investment costs. The analysis shows that a single step operation can be satisfactory if the operation reaches high biomass concentrations. Two-step operations, like pressure filtration followed by spiral plate technology or centrifugation, are attractive from an economic point of view, just as the operation chain of flocculation followed by membrane filtration and a finishing step with spiral plate technology or centrifugation.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.