Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 536051
Title Lability of Nanoparticulate Metal Complexes at a Macroscopic Metal Responsive (Bio)interface : Expression and Asymptotic Scaling Laws
Author(s) Duval, Jérôme F.L.; Town, Raewyn M.; Leeuwen, Herman P. Van
Source The Journal of Physical Chemistry Part C: Nanomaterials and Interfaces 122 (2018)11. - ISSN 1932-7447 - p. 6052 - 6065.
Department(s) Physical Chemistry and Soft Matter
Publication type Refereed Article in a scientific journal
Publication year 2018
Abstract The lability of metal complexes expresses the extent of the dissociative contribution of the complex species to the flux of metal ions toward a macroscopic metal-responsive (bio)interface, for example, an electrodic sensor or an organism. While the case of molecular ligands is well-established, it is only recently that a definition was elaborated for the lability of metal complexes with nanoparticles (NPs) in aqueous dispersions. The definition includes the thickness of the nonequilibrium reaction layer operational at the (bio)interface and the extent of geometrical exclusion of NPs therefrom. In this work, an explicit expression is derived for the lability of nanoparticulate metal complexes (M-NP) toward a macroscopic reactive (bio)interface. Interpretation accounts for the M-NP chemodynamic properties that depend on the NP size, electrostatics, metal diffusion and dehydration rates, and density of metal binding sites for various NP types, for example, soft/core-shell and hard NPs having volume and surface site distribution, respectively. Computational examples under practical conditions illustrate how these factors jointly determine the remarkable nonmonotonous dependence of the M-NP lability parameter on the NP size. The analysis is supported by the formulation of asymptotic scaling laws clarifying how local M-NP dissociation dynamics affect the lability parameter for M-NP complexes at the scale of the macroscopic (bio)interface.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.