Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 536070
Title Enhanced pharmaceutical removal from water in a three step bio-ozone-bio process
Author(s) Wilt, Arnoud de; Gijn, Koen van; Verhoek, Tom; Vergnes, Amber; Hoek, Mirit; Rijnaarts, Huub; Langenhoff, Alette
Source Water Research 138 (2018). - ISSN 0043-1354 - p. 97 - 105.
DOI http://dx.doi.org/10.1016/j.watres.2018.03.028
Department(s) Sub-department of Environmental Technology
Dean & Managers Office
WIMEK
Publication type Refereed Article in a scientific journal
Publication year 2018
Keyword(s) Biodegradation - Combined treatment - Ozonation - Pharmaceuticals - Toxicity - Wastewater
Abstract Individual treatment processes like biological treatment or ozonation have their limitations for the removal of pharmaceuticals from secondary clarified effluents with high organic matter concentrations (i.e. 17 mg TOC/L). These limitations can be overcome by combining these two processes for a cost-effective pharmaceutical removal. A three-step biological-ozone-biological (BO3B) treatment process was therefore designed for the enhanced pharmaceutical removal from wastewater effluent. The first biological step removed 38% of ozone scavenging TOC, thus proportionally reducing the absolute ozone input for the subsequent ozonation. Complementariness between biological and ozone treatment, i.e. targeting different pharmaceuticals, resulted in cost-effective pharmaceutical removal by the overall BO3B process. At a low ozone dose of 0.2 g O3/g TOC and an HRT of 1.46 h in the biological reactors, the removal of 8 out of 9 pharmaceuticals exceeded 85%, except for metoprolol (60%). Testing various ozone doses and HRTs revealed that pharmaceuticals were ineffectively removed at 0.1 g O3/g TOC and an HRT of 0.3 h. At HRTs of 0.47 and 1.46 h easily and moderately biodegradable pharmaceuticals such as caffeine, gemfibrozil, ibuprofen, naproxen and sulfamethoxazole were over 95% removed by biological treatment. The biorecalcitrant carbamazepine was completely ozonated at a dose of 0.4 g O3/g TOC. Ozonation products are likely biodegraded in the last biological reactor as a 17% TOC removal was found. No appreciable acute toxicity towards D. magna, P. subcapitata and V. fischeri was found after exposure to the influents and effluents of the individual BO3B reactors. The BO3B process is estimated to increase the yearly wastewater treatment tariff per population equivalent in the Netherlands by less than 10%. Overall, the BO3B process is a cost-effective treatment process for the removal of pharmaceuticals from secondary clarified effluents.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.