Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 536421
Title Sensitivity of tidal characteristics in double inlet systems to momentum dissipation on tidal flats : a perturbation analysis
Author(s) Hepkema, Tjebbe M.; Swart, Huib E. de; Zagaris, Antonios; Duran–Matute, Matias
Source Ocean Dynamics 68 (2018)4-5. - ISSN 1616-7341 - p. 439 - 455.
Department(s) CVI Bacteriology and Epidemiology
Publication type Refereed Article in a scientific journal
Publication year 2018
Keyword(s) Marsdiep–Vlie system - Momentum sink - Overtides - Perturbation analysis - Sediment transport
Abstract In a tidal channel with adjacent tidal flats, along–channel momentum is dissipated on the flats during rising tides. This leads to a sink of along–channel momentum. Using a perturbative method, it is shown that the momentum sink slightly reduces the M2 amplitude of both the sea surface elevation and current velocity and favours flood dominant tides. These changes in tidal characteristics (phase and amplitude of sea surface elevations and currents) are noticeable if widths of tidal flats are at least of the same order as the channel width, and amplitudes and gradients of along–channel velocity are large. The M2 amplitudes are reduced because stagnant water flows from the flats into the channel, thereby slowing down the current. The M4 amplitudes and phases change because the momentum sink acts as an advective term during the fall of the tide, such a term generates flood dominant currents. For a prototype embayment that resembles the Marsdiep–Vlie double–inlet system of the Western Wadden Sea, it is found that for both the sea surface elevation and current velocity, including the momentum sink, lead to a decrease of approximately 2% in M2 amplitudes and an increase of approximately 25% in M4 amplitudes. As a result, the net import of coarse sediment is increased by approximately 35%, while the transport of fine sediment is hardly influenced by the momentum sink. For the Marsdiep–Vlie system, the M2 sea surface amplitude obtained from the idealised model is similar to that computed with a realistic three–dimensional numerical model whilst the comparison with regard to M4 improves if momentum sink is accounted for.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.