Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 536423
Title Loss of angiopoietin-like 4 (ANGPTL4) in mice with diet-induced obesity uncouples visceral obesity from glucose intolerance partly via the gut microbiota
Author(s) Janssen, Aafke W.F.; Katiraei, Saeed; Bartosinska, Barbara; Eberhard, Daniel; Willems van Dijk, Ko; Kersten, Sander
Source Diabetologia 61 (2018)6. - ISSN 0012-186X - p. 1447 - 1458.
DOI https://doi.org/10.1007/s00125-018-4583-5
Department(s) Human Nutrition (HNE)
Chair Nutrition Metabolism and Genomics
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2018
Keyword(s) Angiopoietin-like 4 - Antibiotics - Glucose tolerance - Gut microbiota - Insulin secretion - White adipose tissue
Abstract Aims/hypothesis: Angiopoietin-like 4 (ANGPTL4) is an important regulator of triacylglycerol metabolism, carrying out this role by inhibiting the enzymes lipoprotein lipase and pancreatic lipase. ANGPTL4 is a potential target for ameliorating cardiometabolic diseases. Although ANGPTL4 has been implicated in obesity, the study of the direct role of ANGPTL4 in diet-induced obesity and related metabolic dysfunction is hampered by the massive acute-phase response and development of lethal chylous ascites and peritonitis in Angptl4−/− mice fed a standard high-fat diet. The aim of this study was to better characterise the role of ANGPTL4 in glucose homeostasis and metabolic dysfunction during obesity. Methods: We chronically fed wild-type (WT) and Angptl4−/− mice a diet rich in unsaturated fatty acids and cholesterol, combined with fructose in drinking water, and studied metabolic function. The role of the gut microbiota was investigated by orally administering a mixture of antibiotics (ampicillin, neomycin, metronidazole). Glucose homeostasis was assessed via i.p. glucose and insulin tolerance tests. Results: Mice lacking ANGPTL4 displayed an increase in body weight gain, visceral adipose tissue mass, visceral adipose tissue lipoprotein lipase activity and visceral adipose tissue inflammation compared with WT mice. However, they also unexpectedly had markedly improved glucose tolerance, which was accompanied by elevated insulin levels. Loss of ANGPTL4 did not affect glucose-stimulated insulin secretion in isolated pancreatic islets. Since the gut microbiota have been suggested to influence insulin secretion, and because ANGPTL4 has been proposed to link the gut microbiota to host metabolism, we hypothesised a potential role of the gut microbiota. Gut microbiota composition was significantly different between Angptl4−/− mice and WT mice. Interestingly, suppression of the gut microbiota using antibiotics largely abolished the differences in glucose tolerance and insulin levels between WT and Angptl4−/− mice. Conclusions/interpretation: Despite increasing visceral fat mass, inactivation of ANGPTL4 improves glucose tolerance, at least partly via a gut microbiota-dependent mechanism.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.