Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 536429
Title Effect of vegan fecal microbiota transplantation on carnitine- and choline-derived trimethylamine-N-oxide production and vascular inflammation in patients with metabolic syndrome
Author(s) Smits, Loek P.; Kootte, Ruud S.; Levin, Evgeni; Prodan, Andrei; Fuentes, Susana; Zoetendal, Erwin G.; Wang, Zeneng; Levison, Bruce S.; Cleophas, Maartje C.P.; Kemper, E.M.; Dallinga-Thie, Geesje M.; Groen, Albert K.; Joosten, Leo A.B.; Netea, Mihai G.; Stroes, Erik S.G.; Vos, Willem M. de; Hazen, Stanley L.; Nieuwdorp, Max
Source Journal of the American Heart Association 7 (2018)7. - ISSN 2047-9980
DOI https://doi.org/10.1161/JAHA.117.008342
Department(s) Microbiological Laboratory
VLAG
WIMEK
Publication type Refereed Article in a scientific journal
Publication year 2018
Keyword(s) Atherosclerosis - Cardiovascular disease - Cardiovascular imaging - Inflammation - Metabolism
Abstract Background--Intestinal microbiota have been found to be linked to cardiovascular disease via conversion of the dietary compounds choline and carnitine to the atherogenic metabolite TMAO (trimethylamine-N-oxide). Specifically, a vegan diet was associated with decreased plasma TMAO levels and nearly absent TMAO production on carnitine challenge. Methods and Results--We performed a double-blind randomized controlled pilot study in which 20 male metabolic syndrome patients were randomized to single lean vegan-donor or autologous fecal microbiota transplantation. At baseline and 2 weeks thereafter, we determined the ability to produce TMAO from d6-choline and d3-carnitine (eg, labeled and unlabeled TMAO in plasma and 24-hour urine after oral ingestion of 250 mg of both isotope-labeled precursor nutrients), and fecal samples were collected for analysis of microbiota composition. 18F-fluorodeoxyglucose positron emission tomography/computed tomography scans of the abdominal aorta, as well as ex vivo peripheral blood mononuclear cell cytokine production assays, were performed. At baseline, fecal microbiota composition differed significantly between vegans and metabolic syndrome patients. With vegan-donor fecal microbiota transplantation, intestinal microbiota composition in metabolic syndrome patients, as monitored by global fecal microbial community structure, changed toward a vegan profile in some of the patients; however, no functional effects from vegan-donor fecal microbiota transplantation were seen on TMAO production, abdominal aortic 18Ffluorodeoxyglucose uptake, or ex vivo cytokine production from peripheral blood mononuclear cells. Conclusions--Single lean vegan-donor fecal microbiota transplantation in metabolic syndrome patients resulted in detectable changes in intestinal microbiota composition but failed to elicit changes in TMAO production capacity or parameters related to vascular inflammation.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.