Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 536662
Title Tree differences in primary and secondary growth drive convergent scaling in leaf area to sapwood area across Europe
Author(s) Petit, Giai; Arx, Georg von; Kiorapostolou, Natasa; Lechthaler, Silvia; Prendin, Angela Luisa; Anfodillo, Tommaso; Caldeira, Maria C.; Cochard, Hervé; Copini, Paul; Crivellaro, Alan; Delzon, Sylvain; Gebauer, Roman; Gričar, Jožica; Grönholm, Leila; Hölttä, Teemu; Jyske, Tuula; Lavrič, Martina; Lintunen, Anna; Lobo-do-Vale, Raquel; Peltoniemi, Mikko; Peters, Richard L.; Robert, Elisabeth M.R.; Roig Juan, Sílvia; Senfeldr, Martin; Steppe, Kathy; Urban, Josef; Camp, Janne Van; Sterck, Frank
Source New Phytologist 218 (2018)4. - ISSN 0028-646X - p. 1382 - 1392.
DOI https://doi.org/10.1111/nph.15118
Department(s) Alterra - Vegetation, forest and landscape ecology
PE&RC
Forest Ecology and Forest Management
Publication type Refereed Article in a scientific journal
Publication year 2018
Keyword(s) Allocation - Climate change - Functional balance - Leaf area - Plant architecture - Sapwood - Structural balance - Xylem
Abstract Trees scale leaf (AL) and xylem (AX) areas to couple leaf transpiration and carbon gain with xylem water transport. Some species are known to acclimate in AL: AX balance in response to climate conditions, but whether trees of different species acclimate in AL: AX in similar ways over their entire (continental) distributions is unknown. We analyzed the species and climate effects on the scaling of AL vs AX in branches of conifers (Pinus sylvestris, Picea abies) and broadleaved (Betula pendula, Populus tremula) sampled across a continental wide transect in Europe. Along the branch axis, AL and AX change in equal proportion (isometric scaling: b ˜ 1) as for trees. Branches of similar length converged in the scaling of AL vs AX with an exponent of b = 0.58 across European climates irrespective of species. Branches of slow-growing trees from Northern and Southern regions preferentially allocated into new leaf rather than xylem area, with older xylem rings contributing to maintaining total xylem conductivity. In conclusion, trees in contrasting climates adjust their functional balance between water transport and leaf transpiration by maintaining biomass allocation to leaves, and adjusting their growth rate and xylem production to maintain xylem conductance.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.