Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 536679
Title A possible molecular basis for photoprotection in the minor antenna proteins of plants
Author(s) Fox, Kieran F.; Ünlü, Caner; Balevičius, Vytautas; Ramdour, Baboo Narottamsing; Kern, Carina; Pan, Xiaowei; Li, Mei; Amerongen, Herbert van; Duffy, Christopher D.P.
Source Biochimica et Biophysica Acta. B, Bioenergetics 1859 (2018)7. - ISSN 0005-2728 - p. 471 - 481.
DOI https://doi.org/10.1016/j.bbabio.2018.03.015
Department(s) Biophysics
VLAG
EPS
Publication type Refereed Article in a scientific journal
Publication year 2018
Keyword(s) Carotenoids - Light-harvesting - Minor antenna - Non-photochemical quenching - Photoprotection - Photosystem II
Abstract

The bioenergetics of light-harvesting by photosynthetic antenna proteins in higher plants is well understood. However, investigation into the regulatory non-photochemical quenching (NPQ) mechanism, which dissipates excess energy in high light, has led to several conflicting models. It is generally accepted that the major photosystem II antenna protein, LHCII, is the site of NPQ, although the minor antenna complexes (CP24/26/29) are also proposed as alternative/additional NPQ sites. LHCII crystals were shown to exhibit the short excitation lifetime and several spectral signatures of the quenched state. Subsequent structure-based models showed that this quenching could be explained by slow energy trapping by the carotenoids, in line with one of the proposed models. Using Fluorescence Lifetime Imaging Microscopy (FLIM) we show that the crystal structure of CP29 corresponds to a strongly quenched conformation. Using a structure-based theoretical model we show that this quenching may be explained by the same slow, carotenoid-mediated quenching mechanism present in LHCII crystals.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.